Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 141(6): 1078-1090, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28388839

RESUMO

Endogenous estrogens become carcinogens when dangerous metabolites, the catechol estrogen quinones, are formed. In particular, the catechol estrogen-3,4-quinones can react with DNA to produce an excess of specific depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating subsequent cancer-initiating mutations. Unbalanced estrogen metabolism yields excessive catechol estrogen-3,4-quinones, increasing formation of depurinating estrogen-DNA adducts and the risk of initiating cancer. Evidence for this mechanism of cancer initiation comes from various types of studies. High levels of depurinating estrogen-DNA adducts have been observed in women with breast, ovarian or thyroid cancer, as well as in men with prostate cancer or non-Hodgkin lymphoma. Observation of high levels of depurinating estrogen-DNA adducts in high risk women before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Formation of analogous depurinating dopamine-DNA adducts is hypothesized to initiate Parkinson's disease by affecting dopaminergic neurons. Two dietary supplements, N-acetylcysteine and resveratrol complement each other in reducing formation of catechol estrogen-3,4-quinones and inhibiting formation of estrogen-DNA adducts in cultured human and mouse breast epithelial cells. They also inhibit malignant transformation of these cells. In addition, formation of adducts was reduced in women who followed a Healthy Breast Protocol that includes N-acetylcysteine and resveratrol. When initiation of cancer is blocked, promotion, progression and development of the disease cannot occur. These results suggest that reducing formation of depurinating estrogen-DNA adducts can reduce the risk of developing a variety of types of human cancer.


Assuntos
Adutos de DNA/metabolismo , Estrogênios/metabolismo , Neoplasias/etiologia , Neoplasias/prevenção & controle , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , Animais , Dopamina/metabolismo , Humanos , Neoplasias/metabolismo , Doença de Parkinson/metabolismo , Purinas/metabolismo
2.
J Altern Complement Med ; 21(6): 321-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25974761

RESUMO

BACKGROUND/OBJECTIVE: A functional medicine approach to reduce breast cancer risk is preferable to early detection and treatment in maintaining breast health. Estrogens are implicated in breast cancer initiation through conversion to metabolites that react with DNA to form specific adducts associated with the development of breast cancer. The purpose of this study was to determine the ability of a defined clinical intervention, the AVERTi-Healthy Breast Program (AHBP), to reduce breast cancer risk conditions likely to develop into breast disease. METHODS: To obtain evidence that risk conditions in breast tissue can be reduced with a defined, multifaceted approach, this small clinical trial of 21 women measured indicators of breast health. A detailed clinical evaluation was conducted with all participants, including identification of physical symptoms, such as areas of tenderness upon palpation. Two laboratory assessments were conducted to determine the efficacy of the AHBP. First, 31 estrogen metabolites, estrogen conjugates, and depurinating estrogen-DNA adducts in urine samples taken before intervention were analyzed. The ratio of DNA adducts to metabolites and conjugates was calculated for each sample. Second, oxidative stress was analyzed by measuring the redox potential of glutathione and cysteine in blood plasma. All assessments were conducted before and after participation. RESULTS: The estrogen adduct ratio and redox potential were improved after 90 days on the AHBP. A significant mean reduction of 3.31 (p=0.03) was observed in the adduct ratio, along with a significant improvement in the redox potential of 3.80 (p=0.05). The significant change in the adduct ratio occurred in women whose oxidative stress profile also improved. CONCLUSION: These significant within-individual decreases suggest that the AHBP can reduce the risk for breast cancer in a relatively short time.


Assuntos
Neoplasias da Mama/prevenção & controle , Mama/fisiologia , Promoção da Saúde , Serviços de Saúde da Mulher , Adulto , Biomarcadores/sangue , Biomarcadores/urina , Feminino , Humanos , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Projetos Piloto
3.
IUBMB Life ; 63(12): 1087-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22045657

RESUMO

The neurotransmitter dopamine is oxidized to its quinone (DA-Q), which at neutral pH undergoes intramolecular cyclization by 1,4-Michael addition, followed by oxidation to form leukochrome, then aminochrome, and finally neuromelanin. At lower pH, the amino group of DA is partially protonated, allowing the competitive intermolecular 1,4-Michael addition with nucleophiles in DNA to form the depurinating adducts, DA-6-N3Ade and DA-6-N7Gua. Catechol estrogen-3,4-quinones react by 1,4-Michael addition to form the depurinating 4-hydroxyestrone(estradiol)-1-N3Ade [4-OHE1(E2)-1-N3Ade] and 4-OHE1(E2)-1-N7Gua adducts, which are implicated in the initiation of breast and other human cancers. The effect of pH was studied by reacting tyrosinase-activated DA with DNA and measuring the formation of depurinating adducts. The most adducts were formed at pH 4, 5, and 6, and their level was nominal at pH 7 and 8. The N3Ade adduct depurinated instantaneously, but N7Gua had a half-life of 3 H. The slow loss of the N7Gua adduct is analogous to that observed in previous studies of natural and synthetic estrogens. The antioxidants N-acetylcysteine and resveratrol efficiently blocked formation of the DA-DNA adducts. Thus, slightly acidic conditions render competitive the reaction of DA-Q with DNA to form depurinating adducts. We hypothesize that formation of these adducts could lead to mutations that initiate Parkinson's disease. If so, use of N-acetylcysteine and resveratrol as dietary supplements may prevent initiation of this disease.


Assuntos
Antioxidantes/química , Adutos de DNA/química , Adutos de DNA/genética , Dopamina/química , Monofenol Mono-Oxigenase/química , Doença de Parkinson/genética , Acetilcisteína/química , Benzoquinonas/química , Benzoquinonas/metabolismo , Adutos de DNA/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Melatonina/química , Doença de Parkinson/patologia , Resveratrol , Estilbenos/química , Ácido Tióctico/química
4.
Free Radic Biol Med ; 50(1): 78-85, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20934508

RESUMO

Substantial evidence suggests that catechol estrogen-3,4-quinones react with DNA to form predominantly the depurinating adducts 4-hydroxyestrone (estradiol)-1-N3Ade [4-OHE(1)(E(2))-1-N3Ade] and 4-OHE(1)(E(2))-1-N7Gua. Apurinic sites resulting from these adducts generate critical mutations that can initiate cancer. The paradigm of cancer initiation is based on an imbalance in estrogen metabolism between activating pathways that lead to estrogen-DNA adducts and deactivating pathways that lead to estrogen metabolites and conjugates. This imbalance can be improved to minimize formation of adducts by using antioxidants, such as resveratrol (Resv) and N-acetylcysteine (NAcCys). To compare the ability of Resv and NAcCys to block formation of estrogen-DNA adducts, we used the human breast epithelial cell line MCF-10F treated with 4-OHE(2). Resv and NAcCys directed the metabolism of 4-OHE(2) toward protective pathways. NAcCys reacted with the quinones and reduced the semiquinones to catechols. This pathway was also carried out by Resv. In addition, Resv induced the protective enzyme quinone reductase, which reduces E(1)(E(2))-3,4-quinones to 4-OHE(1)(E(2)). Resv was more effective at increasing the amount of 4-OCH(3)E(1)(E(2)) than NAcCys. Inhibition of estrogen-DNA adduct formation was similar at lower doses, but at higher doses Resv was about 50% more effective than NAcCys. Their combined effects were additive. Therefore, these two antioxidants provide an excellent combination to protect catechol estrogens from oxidation to catechol quinones.


Assuntos
Acetilcisteína/farmacologia , Neoplasias da Mama/prevenção & controle , Carcinoma/prevenção & controle , Transformação Celular Neoplásica/efeitos dos fármacos , Glândulas Mamárias Humanas/efeitos dos fármacos , Estilbenos/farmacologia , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Neoplasias da Mama/patologia , Carcinoma/patologia , Linhagem Celular , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Glândulas Mamárias Humanas/patologia , Modelos Biológicos , Resveratrol , Estilbenos/uso terapêutico
5.
Free Radic Biol Med ; 49(3): 392-400, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20472053

RESUMO

Catechol estrogens, especially 4-hydroxylated metabolites of 17beta-estradiol (E(2)), are responsible for estrogen-induced carcinogenesis. 4-Hydroxyestradiol (4-OHE(2)), a major metabolite of E(2) formed preferentially by cytochrome P-450 1B1, is oxidized to E(2)-3,4-quinone, which can react with DNA to yield the depurinating adducts 4-OHE(2)-1-N3Ade and 4-OHE(2)-1-N7Gua. The apurinic sites generated by the loss of these depurinating adducts induce mutations that could lead to cancer initiation. In this study, we have evaluated the effects of N-acetylcysteine (NAcCys) on the metabolism of two cell lines, MCF-10F (a normal human breast epithelial cell line) and E6 (a normal mouse mammary epithelial cell line), treated with 4-OHE(2) or its reactive metabolite, E(2)-3,4-quinone. Extensive HPLC with electrochemical detection and UPLC-MS/MS analyses of the cell media demonstrated that the presence of NAcCys very efficiently shifted the estrogen metabolism toward protective methoxylation and conjugation pathways in multiple ways, whereas formation of depurinating DNA adducts was inhibited. Protection by NAcCys seems to be similar in both cell lines, irrespective of their origin (human or mouse) or the presence of estrogen receptor-alpha. This finding suggests that NAcCys, a common dietary supplement, could be used as a potential chemopreventive agent to block the initial step in the genotoxicity caused by catechol estrogen quinones.


Assuntos
Acetilcisteína/farmacologia , Adutos de DNA/metabolismo , Estrogênios de Catecol/metabolismo , Animais , Antioxidantes/farmacologia , Mama/metabolismo , Neoplasias da Mama/prevenção & controle , Linhagem Celular , Estradiol/análogos & derivados , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Humanos , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/prevenção & controle , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA