Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta Med ; 90(4): 267-275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38081308

RESUMO

Tyrosinase is a target enzyme to be inhibited in order to reduce excessive melanin production and prevent typical age-related skin disorders. Essential oils are complex mixtures of volatile compounds, belonging mainly to monoterpenoids and sesquiterpenoids, which have been relatively little studied as tyrosinase inhibitors. Among the monoterpenoids, citral (a mixture of neral and geranial) is a fragrance compound in several essential oils that has shown interesting tyrosinase inhibitory activity. Although citral is listed as an allergen among the 26 fragrances in Annex III of the Cosmetics Directive 2003/15/EC, it can be safely used for the formulation of topical products in amounts that are not expected to cause skin sensitization, as shown by various commercially available products.The aim of this work was to evaluate two different formulations (oil/water emulsion, oily solution) containing a new combination of essential oils (Litsea cubeba, Pinus mugo, Cymbopogon winterianus) applied to the skin both in nonocclusive and partially occlusive modes. The blend is designed to reduce the concentration of citral to avoid potential skin reactions while taking advantage of the inhibitory activity of citral. Specifically, the amount of citral and other bioactive compounds (myrcene, citronellal) delivered through the skin was studied as a function of formulation and mode of application.The results show that an oil/water emulsion is preferable because it releases the bioactive compounds rapidly and minimizes their evaporative loss. In addition, semi-occluded conditions are required to prevent evaporation, resulting in higher availability of the bioactive compounds in viable skin.


Assuntos
Monoterpenos Acíclicos , Cymbopogon , Litsea , Óleos Voláteis , Pinus , Óleos Voláteis/farmacologia , Monofenol Mono-Oxigenase , Emulsões , Monoterpenos/farmacologia
2.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982396

RESUMO

Vitamin D plays an important role in numerous cellular functions due to the ability to bind the Vitamin D receptor (VDR), which is present in different tissues. Several human diseases depend on low vitamin D3 (human isoform) serum level, and supplementation is necessary. However, vitamin D3 has poor bioavailability, and several strategies are tested to increase its absorption. In this work, the complexation of vitamin D3 in Cyclodextrin-based nanosponge (CD-NS, in particular, ßNS-CDI 1:4) was carried out to study the possible enhancement of bioactivity. The ßNS-CDI 1:4 was synthesized by mechanochemistry, and the complex was confirmed using FTIR-ATR and TGA. TGA demonstrated higher thermostability of the complexed form. Subsequently, in vitro experiments were performed to evaluate the biological activity of Vitamin D3 complexed in the nanosponges on intestinal cells and assess its bioavailability without cytotoxic effect. The Vitamin D3 complexes enhance cellular activity at the intestinal level and improve its bioavailability. In conclusion, this study demonstrates for the first time the ability of CD-NS complexes to improve the chemical and biological function of Vitamin D3.


Assuntos
Antineoplásicos , Ciclodextrinas , Nanoestruturas , Humanos , Ciclodextrinas/farmacologia , Ciclodextrinas/química , Vitamina D/farmacologia , Nanoestruturas/química , Colecalciferol/farmacologia , Receptores de Calcitriol
3.
Int J Nanomedicine ; 17: 1725-1739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444418

RESUMO

Purpose: Medium versus low weight (MW vs LW) chitosan-shelled oxygen-loaded nanodroplets (cOLNDs) and oxygen-free nanodroplets (cOFNDs) were comparatively challenged for biocompatibility on human keratinocytes, for antimicrobial activity against four common infectious agents of chronic wounds (CWs) - methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Candida albicans and C. glabrata - and for their physical interaction with cell walls/membranes. Methods: cNDs were characterized for morphology and physico-chemical properties by microscopy and dynamic light scattering. In vitro oxygen release from cOLNDs was measured through an oximeter. ND biocompatibility and ability to promote wound healing in human normoxic/hypoxic skin cells were challenged by LDH and MTT assays using keratinocytes. ND antimicrobial activity was investigated by monitoring upon incubation with/without MW or LW cOLNDs/cOFNDs either bacteria or yeast growth over time. The mechanical interaction between NDs and microorganisms was also assessed by confocal microscopy. Results: LW cNDs appeared less toxic to keratinocytes than MW cNDs. Based on cell counts, either MW or LW cOLNDs and cOFNDs displayed long-term antimicrobial efficacy against S. pyogenes, C. albicans, and C. glabrata (up to 24 h), whereas a short-term cytostatic effects against MRSA (up to 6 h) was revealed. The internalization of all ND formulations by all four microorganisms, already after 3 h of incubation, was showed, with the only exception to MW cOLNDs/cOFNDs that adhered to MRSA walls without being internalized even after 24 h. Conclusion: cNDs exerted bacteriostatic and fungistatic effects, due to the presence of chitosan in the outer shell and independently of oxygen addition in the inner core. The duration of such effects strictly depends on the characteristics of each microbial species, and not on the molecular weight of chitosan in ND shells. However, LW chitosan was better tolerated by human keratinocytes than MW. For these reasons, the use of LW NDs should be recommended in future research to assess cOLND efficacy for the treatment of infected CWs.


Assuntos
Anti-Infecciosos , Quitosana , Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Candida albicans , Candida glabrata , Quitosana/química , Quitosana/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Oxigênio/química , Infecção dos Ferimentos/tratamento farmacológico
4.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361743

RESUMO

While investigating the possible synergistic effect of the conventional anticancer therapies, which, taken individually, are often ineffective against critical tumors, such as central nervous system (CNS) ones, the design of a theranostic nanovector able to carry and deliver chemotherapy drugs and magnetic hyperthermic agents to the target radiosensitizers (oxygen) was pursued. Alongside the original formulation of polymeric biodegradable oxygen-loaded nanostructures, their properties were fine-tuned to optimize their ability to conjugate therapeutic doses of drugs (doxorubicin) or antitumoral natural substances (curcumin). Oxygen-loaded nanostructures (diameter = 251 ± 13 nm, ζ potential = -29 ± 5 mV) were finally decorated with superparamagnetic iron oxide nanoparticles (SPIONs, diameter = 18 ± 3 nm, ζ potential = 14 ± 4 mV), producing stable, effective and non-agglomerating magnetic nanovectors (diameter = 279 ± 17 nm, ζ potential = -18 ± 7 mV), which could potentially target the tumoral tissues under magnetic driving and are monitorable either by US or MRI imaging.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Quitosana/química , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Radiossensibilizantes/farmacologia , Nanomedicina Teranóstica/métodos , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Meios de Contraste/síntese química , Meios de Contraste/farmacologia , Curcumina/química , Curcumina/farmacologia , Sulfato de Dextrana/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Composição de Medicamentos/métodos , Humanos , Cinética , Nanopartículas de Magnetita/ultraestrutura , Oxigênio/química , Oxigênio/farmacologia , Radiossensibilizantes/síntese química
5.
Molecules ; 25(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365941

RESUMO

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


Assuntos
Sistema Nervoso Central , Portadores de Fármacos/química , Hipertermia Induzida , Nanopartículas de Magnetita/química , Nanomedicina Teranóstica/métodos , Animais , Neoplasias Encefálicas/terapia , Sobrevivência Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Fenômenos Químicos , Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Hemólise , Humanos , Hipertermia Induzida/métodos , Campos Magnéticos
6.
Planta Med ; 86(6): 442-450, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32097972

RESUMO

Melaleuca alternifolia essential oil (tea tree oil) is widely used as an ingredient in skin care products because of its recognized biological activities. The European Scientific Committee on Consumer Products constantly promotes research and collection of data on both skin distribution and systemic exposure to tea tree oil components after the application of topical formulations. This study quantitatively evaluates permeation, skin layer distribution (stratum corneum, epidermis, and dermis), and release into the surrounding environment of bioactive tea tree oil markers (i.e., α-pinene, ß-pinene, α-terpinene, 1,8-cineole, γ-terpinene, 4-terpineol, α-terpineol) when a 5% tea tree oil formulation is applied at a finite dosing regimen. Permeation kinetics were studied in vitro on pig ear skin using conventional static glass Franz diffusion cells and cells ad hoc modified to monitor the release of markers into the atmosphere. Formulation, receiving phases, and skin layers were analyzed using a fully automatic and solvent-free method based on headspace solid-phase microextraction/gas chromatography-mass spectrometry. This approach affords, for the first time, to quantify tea tree oil markers in the different skin layers while avoiding using solvents and overcoming the existing methods based on solvent extraction. The skin layers contained less than 1% of each tea tree oil marker in total. Only oxygenated terpenes significantly permeated across the skin, while hydrocarbons were only absorbed at trace level. Substantial amounts of markers were released into the atmosphere.


Assuntos
Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Animais , Solventes , Suínos , Terpenos
7.
Carbohydr Polym ; 231: 115763, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31888848

RESUMO

The complexation of the bioactive compound oxyresveratrol (OXY) with a polymer called cyclodextrin-based nanosponge (CD-NS) and its application was studied.A new methodology is used to calculate, an apparent inclusion complex constant (KFapp) between a ligand and CD-NSs. Moreover, the KFapp of resveratrol was also evaluated and compared. The complex of OXY with the nanosponge ß-CDI 1:4, was studied in vitro using DSC, TGA and FTIR techniques and its drug loading and release behavior were studied. An in vitro digestion showed higher protection of OXY complexed than free OXY. The bioactivity enhancing capacity of OXY was also studied against prostate (PC-3) and colon (HT-29 and HCT-116) cancer cell lines, where it showed stronger cell viability inhibition than the free drug. The findings as a whole represent a new opportunity for studying the complexation of drugs in CD-NSs and the use of oxyresveratrol as an ingredient in nutraceutical products.


Assuntos
Antineoplásicos/química , Nanoestruturas/química , Extratos Vegetais/farmacologia , Estilbenos/farmacologia , beta-Ciclodextrinas/química , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Células HCT116 , Humanos , Masculino , Extratos Vegetais/química , Polímeros/química , Neoplasias da Próstata/tratamento farmacológico , Solubilidade , Estilbenos/química , Temperatura , beta-Ciclodextrinas/farmacologia
8.
Phytomedicine ; 56: 156-164, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668336

RESUMO

BACKGROUND: Ailanthone (Aila) is a natural active compound isolated from the Ailanthus altissima, which has been shown to possess an "in vitro" growth-inhibitory effect against several cancer cell lines. Advanced bladder cancer is a common disease characterized by a frequent onset of resistance to cisplatin-based therapy. The cisplatin (CDDP) resistance is accompanied by an increase in Nrf2 protein expression which contributes to conferring resistance. Recently, we demonstrated a cross-talk between Nrf2 and YAP. YAP has also been demonstrated to play an important role in chemoresistance of bladder cancer. PURPOSE: We analyzed the antitumor effect of Aila in sensitive and CDDP-resistant bladder cancer cells and the molecular mechanisms involved in Aila activity. STUDY DESIGN: Sensitive and CDDP-resistant 253J B-V and 253J bladder cancer cells, intrinsically CDDP-resistant T24 bladder cancer cells and HK-2 human renal cortex cells were used. Cells were treated with diverse concentrations of Aila and proliferation, cell cycle, apoptosis and gene expressions were determined. METHODS: Aila toxicity and proliferation were determined by MTT and colony forming methods, respectively. Cell cycle was determined by cytofluorimetric analysis through PI staining method. Apoptosis was detected using Annexin V and PI double staining followed by quantitative flow cytometry. Expressions of Nrf2, Yap, c-Myc, and house-keeping genes were determined by western blot with specific antibodies. Cell migration was detected by wound healing and Boyden chamber analysis. RESULTS: Aila inhibited the growth of sensitive and CDDP-resistant bladder cancer cells with the same effectiveness. On the contrary, the growth of HK-2 cells was only slightly reduced by Aila. Cell cycle analysis revealed an accumulation of Aila-treated bladder cancer cells in the G0/G1 phase. Interestingly, Aila strongly reduced Nrf2 expression in these cell lines. Moreover, Aila significantly reduced YAP, and c-Myc protein expression. The random and the oriented migration of bladder cancer cells were strongly inhibited by Aila treatment, in particular in CDDP-resistant cells. CONCLUSION: Aila inhibited proliferation and invasiveness of bladder cancer cells. Its high effectiveness in CDDP resistant cells could be related to the inhibition of Nrf2, YAP, and c-Myc expressions. Aila could represent a new tool to treating CDDP-resistant bladder cancers.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quassinas/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Proteínas de Sinalização YAP
9.
Phytomedicine ; 52: 23-31, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30599903

RESUMO

BACKGROUND: Genistein is a soy-derived isoflavone and phytoestrogen with antioxidant and neuroprotective activity. Genistein has intrinsically low oral bioavailability that affects its dose-response activities. PURPOSE: Nanotechnologies were used to obtain the delivery of genistein to the brain: lipid-based nanovesicles, transfersomes, loaded with the phytoestrogen were developed as potential therapeutic or preventive strategy against neurodegenerative diseases by intranasal administration. METHODS: Phosphatidylcholine from soybean and different edge activators were used to prepare transfersomes. The effect of selected nanovesicles on the oxidative damage was studied in PC12 cell line. RESULTS: Suitable nanovesicles as carrier of genistein were obtained; their composition affects deformability, drug permeation behavior and cytotoxicity. In particular, the formulation containing Span 80, GEN-TF2, showed efficiency of internalization into the cell and it was able to attenuate ROS formation and to reduce the amount of apoptotic cells generated by H2O2 treatment compared to genistein. CONCLUSION: GEN-TF2 was able to reduce the oxidative damage suggesting a possible antioxidant role of this drug delivery system. These obtained data confer to GEN-TF2 a potential antioxidant activity and then it could be used as adjuvant therapy in oxidative stress-related neurodegenerative diseases.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Portadores de Fármacos , Genisteína/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Nanoestruturas , Oxirredução , Células PC12 , Fitoestrógenos/farmacologia , Ratos
10.
J Control Release ; 126(1): 17-25, 2008 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-18079013

RESUMO

A poly(amidoamine) (PAA) copolymer with beta-cyclodextrin was obtained by polyaddition reaction of 6-deoxy-6-amino-beta-cyclodextrin (beta-CD-NH(2)) and 2-methylpiperazine to 2,2-bis(acrylamido)acetic acid in aqueous medium. This beta-CD/PAA copolymer bears beta-CD units along the macromolecular chain, is water-soluble and non-cytotoxic. The complexing capacity of beta-CD/PAA was determined using an antiviral drug, Acyclovir, as a model of poorly water-soluble drug. Complex formation was confirmed by means of DSC and FTIR analyses. beta-CD/PAA can solubilize up to 11% w/w of Acyclovir notably increasing the aqueous solubility of the drug. The in vitro release studies showed the dependence of Acyclovir release rate on the solution pH. The antiviral activity of Acyclovir beta-CD/PAA complex was evaluated against herpes simplex virus type I in cell cultures. The Acyclovir beta-CD/PAA complex exhibited a higher antiviral activity than the free drug.


Assuntos
Aciclovir , Antivirais , Portadores de Fármacos/química , Poliaminas/química , beta-Ciclodextrinas/química , Aciclovir/administração & dosagem , Aciclovir/química , Aciclovir/farmacologia , Animais , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Portadores de Fármacos/síntese química , Avaliação Pré-Clínica de Medicamentos , Herpesvirus Humano 1/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Poliaminas/síntese química , Solubilidade , Células Vero , beta-Ciclodextrinas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA