RESUMO
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to increase due in part to the obesity epidemic and to environmental exposures to metabolism disrupting chemicals. A single gavage exposure of male mice to Aroclor 1260 (Ar1260), an environmentally relevant mixture of non-dioxin-like polychlorinated biphenyls (PCBs), resulted in steatohepatitis and altered RNA modifications in selenocysteine tRNA 34 weeks post-exposure. Unbiased approaches identified the liver proteome, selenoproteins, and levels of 25 metals. Ar1260 altered the abundance of 128 proteins. Enrichment analysis of the liver Ar1260 proteome included glutathione metabolism and translation of selenoproteins. Hepatic glutathione peroxidase 4 (GPX4) and Selenoprotein O (SELENOO) were increased and Selenoprotein F (SELENOF), Selenoprotein S (SELENOS), Selenium binding protein 2 (SELENBP2) were decreased with Ar1260 exposure. Increased copper, selenium (Se), and zinc and reduced iron levels were detected. These data demonstrate that Ar1260 exposure alters the (seleno)proteome, Se, and metals in MASLD-associated pathways.
Assuntos
Arocloros , Fígado Gorduroso , Selênio , Masculino , Camundongos , Animais , Proteoma/metabolismo , Glutationa Peroxidase/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Fígado/metabolismoRESUMO
Pulmonary arterial hypertension (PAH) prevalence is increasing worldwide, and the prognosis is poor with 5-year survival < 50% in high risk patients. The relationship between metal exposure/essential metal dyshomeostasis and PAH/right ventricular dysfunction is less investigated. The aim of this study is to investigate vegetable consumptions and metal levels between PAH patients and controls. This was a prospective, single center pilot study. Questionnaires were completed by all study subjects (20 PAH patients and 10 healthy controls) on smoking, metal exposure risks, metal supplements, and vegetable consumptions. Blood and urine samples were collected to measure 25 metal levels in blood, plasma, and urine using an X Series II quadrupole inductively coupled plasma mass spectrometry. Statistical analysis was conducted using SAS 9.5 and results with p value < 0.05 were considered significant. Vegetables consumptions (broccoli risk ratio [RR] = 0.4, CI = (0.2, 0.9)], cabbage [RR = 0.2, CI = (0.1, 0.8)], and brussel sprouts [RR = 0.2, CI = (0.1, 0.5)]) are associated with less risks of PAH. In the plasma samples, silver (p < 0.001), and copper (p = 0.002) levels were significantly higher in PAH patients. There was significant positive correlation between cardiac output and cardiac index with plasma levels of silver (r = 0.665, p = 0.001 and r = 0.678 p = 0.001), respectively. There was significant correlation between mixed venous saturation, 6-min walk distance, and last BNP with plasma levels of chromium (r = -0.520, p = 0.022; r = -0.55, p = 0.014; r = 0.463, p = 0.039), respectively. In conclusion, there are significant differences between PAH and control groups in terms of vegetable consumptions and metal concentrations. Silver and chromium levels are correlated with clinical indicators of PAH severities.
RESUMO
The pathogenesis of non-alcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disease, is associated with zinc deficiency. Previous studies show zinc supplementation improves steatosis and glucose metabolism, but its therapeutic effects in patients with established NAFLD remain unclear. We developed an in vivo model to characterize the effects of zinc supplementation on high-fat diet (HFD) induced NAFLD and hypothesized that the established NAFLD would be attenuated by zinc supplementation. Male C57BL/6J mice were fed a control diet or HFD for 12 weeks. Mice were then further grouped into normal and zinc-supplemented diets for 8 additional weeks. Body composition and glucose tolerance were determined before and after zinc supplementation. At euthanasia, plasma and liver tissue were collected for characterization and downstream analysis. As expected, 12 weeks of HFD resulted in reduced glucose clearance and altered body composition. Eight weeks of subsequent zinc supplementation did not alter glucose handling, plasma transaminases, steatosis, or hepatic gene expression. Results from our model suggest 8-week zinc supplementation cannot reverse established NAFLD. The HFD may have caused NAFLD disease progression beyond rescue by an 8-week period of zinc supplementation. Future studies will address these limitations and provide insights into zinc as a therapeutic agent for established NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Zinco/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Suplementos Nutricionais , Glucose/metabolismo , Modelos Animais de DoençasRESUMO
Dietary copper-fructose interactions contribute to the development of nonalcoholic fatty liver disease (NAFLD). Gut microbiota play critical roles in the pathogenesis of NAFLD. The aim of this study was to determine the effect of different dietary doses of copper and their interactions with high fructose on gut microbiome. Male weanling Sprague-Dawley rats were fed diets with adequate copper (6 ppm CuA), marginal copper (1.5 ppm CuM) (low copper), or supplemented copper (20 ppm CuS) (high copper) for 4 wk. Deionized water or deionized water containing 30% fructose (wt/vol) was given ad libitum. Copper status, liver enzymes, gut barrier function, and gut microbiome were evaluated. Both low- and high-copper diets led to liver injury in high-fructose-fed rats, and this was associated with gut barrier dysfunction, as shown by the markedly decreased tight junction proteins and increased gut permeability. 16S rDNA sequencing analysis revealed distinct alterations of the gut microbiome associated with dietary low- and high-copper/high-fructose feeding. The common features of the alterations of the gut microbiome were the increased abundance of Firmicutes and the depletion of Akkermansia. However, they differed mainly within the phylum Firmicutes. Our data demonstrated that a complex interplay among host, microbes, and dietary copper-fructose interaction regulates gut microbial metabolic activity, which may contribute to the development of liver injury and hepatic steatosis. The distinct alterations of gut microbial activity, which were associated with the different dietary doses of copper and fructose, imply that separate mechanism(s) may be involved. NEW & NOTEWORTHY First, dietary low- and high-copper/high-fructose-induced liver injury are associated with distinct alterations of gut microbiome. Second, dietary copper level plays a critical role in maintaining the gut barrier integrity, likely by acting on the intestinal tight junction proteins and the protective commensal bacteria Akkermansia. Third, the alterations of gut microbiome induced by dietary low and high copper with or without fructose differ mainly within the phylum Firmicutes.
Assuntos
Bactérias/efeitos dos fármacos , Cobre/toxicidade , Açúcares da Dieta/toxicidade , Frutose/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Íleo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Cobre/administração & dosagem , Cobre/metabolismo , Açúcares da Dieta/administração & dosagem , Açúcares da Dieta/metabolismo , Relação Dose-Resposta a Droga , Disbiose , Frutose/metabolismo , Interações Hospedeiro-Patógeno , Íleo/metabolismo , Íleo/microbiologia , Íleo/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Associadas a Pancreatite/metabolismo , Ratos Sprague-Dawley , Proteínas de Junções Íntimas/metabolismoRESUMO
OPINION STATEMENT: Many variables, aside from the amount and duration of alcohol consumption, play a role in the development and progression of alcoholic liver disease (ALD). One critical factor that can be modified is diet/nutrition. We have made major recent advances in our understanding of the interactions of nutrition and ALD. In this article, we review advances made in zinc metabolism/therapy for ALD. There is major zinc dyshomeostasis with ALD which is mediated, in part, by poor intake and absorption, increased excretion, and altered zinc transporters, especially ZIP14. Zinc deficiency plays an etiologic role in multiple mechanisms of ALD, ranging from intestinal barrier dysfunction to hepatocyte apoptosis. Zinc supplementation is highly effective at correcting these ALD mechanisms and preventing/treating experimental ALD. There is no Food and Drug Administration (FDA) approved therapy for any stage of ALD. Because animal and human data suggest that zinc deficiency occurs early in the course of ALD, we treat most ALD patients with daily oral zinc supplementation (220 mg zinc sulfate which contains 50 mg elemental zinc).
RESUMO
BACKGROUND: Heavy alcohol consumption frequently causes liver inflammation/injury, and certain fatty acids (FAs) may be involved in this liver pathology. In this study, we evaluated the association of heavy drinking and the changes in the FA levels involved in the ω-6 (pro-inflammatory) and ω-3 (anti-inflammatory) state in alcohol-dependent (AD) patients who had no clinical manifestations of liver injury. We aimed to identify sex-based differences in patients with mild or no biochemical evidence of liver injury induced by heavy drinking. METHODS: A total of 114 heavy drinking AD female and male patients aged 21 to 65 years without clinical manifestations of liver injury, who were admitted to an alcohol dependence treatment program, were grouped by the alanine aminotransferase (ALT) levels: ≤40 IU/l, as no liver injury (GR.1), and >40 IU/l, as mild liver injury (GR.2). Patients were actively drinking until the day of admission. Comprehensive metabolic panel, comprehensive FA panel, and drinking history data were evaluated. RESULTS: Elevated ALT and aspartate aminotransferase (AST) showed close association with markers of heavy alcohol intake. In the patients with mild biochemical liver injury (GR.2), females showed significantly higher AST level than males. Significant association of AST and total drinks in past 90 days (TD90) in females, and AST and heavy drinking days in past 90 days (HDD90) in males was observed. The ω-6:ω-3 ratio showed a significant pro-inflammatory response only in females with mild liver injury (GR.2) when adjusted by drinking history marker, TD90. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were increased in males with liver injury, while females did not show any comparable rise in EPA; and DHA levels were lower. CONCLUSIONS: Measures of heavy drinking, TD90 and HDD90, predicted changes in liver injury. Changes in the ω-3 and ω-6 FA levels and the ω-6:ω-3 ratio showed a pro-inflammatory shift in patients with biochemical liver injury with a significant effect in females. Changes in FAs involved in the inflammatory state may represent one mechanism for liver inflammation/injury in response to heavy alcohol drinking.
Assuntos
Alanina Transaminase/sangue , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/sangue , Alcoolismo/sangue , Aspartato Aminotransferases/sangue , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-6/sangue , Hepatopatias Alcoólicas/sangue , Adulto , Idoso , Alcoolismo/complicações , Biomarcadores/sangue , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Feminino , Humanos , Hepatopatias Alcoólicas/complicações , Masculino , Pessoa de Meia-Idade , Sintomas Prodrômicos , Caracteres Sexuais , Adulto JovemRESUMO
Fibroblast growth factor 21 (FGF21) is a hepatokine that regulates glucose and lipid metabolism in the liver. We sought to determine the role of FGF21 in hepatic steatosis in mice exposed to chronic alcohol treatment and to discern underlying mechanisms. Male FGF21 knockout (FGF21 KO) and control (WT) mice were divided into groups that were fed either the Lieber DeCarli diet containing 5% alcohol or an isocaloric (control) diet for 4 weeks. One group of WT mice exposed to alcohol received recombinant human FGF21 (rhFGF21) in the last 5 days. Liver steatosis and inflammation were assessed. Primary mouse hepatocytes and AML-12 cells were incubated with metformin or rhFGF21. Hepatic genes and the products involved in in situ lipogenesis and fatty acid ß-oxidation were analyzed. Alcohol exposure increased circulating levels and hepatic expression of FGF21. FGF21 depletion exacerbated alcohol-induced hepatic steatosis and liver injury, which was associated with increased activation of genes involved in lipogenesis mediated by SREBP1c and decreased expression of genes involved in fatty acid ß-oxidation mediated by PGC1α. rhFGF21 administration reduced alcohol-induced hepatic steatosis and inflammation in WT mice. These results reveal that alcohol-induced FGF21 expression is a hepatic adaptive response to lipid dysregulation. Targeting FGF21 signaling could be a novel treatment approach for alcoholic steatohepatitis.
Assuntos
Fígado Gorduroso Alcoólico/genética , Fatores de Crescimento de Fibroblastos/genética , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/sangue , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Fígado Gorduroso Alcoólico/sangue , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/uso terapêutico , Expressão Gênica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipogênese , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Proteínas Recombinantes/uso terapêutico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Zinc is an essential trace element required for normal cell growth, development, and differentiation. It is involved in DNA synthesis, RNA transcription, and cell division and activation. It is a critical component in many zinc protein/enzymes, including critical zinc transcription factors. Zinc deficiency/altered metabolism is observed in many types of liver disease, including alcoholic liver disease (ALD) and viral liver disease. Some of the mechanisms for zinc deficiency/altered metabolism include decreased dietary intake, increased urinary excretion, activation of certain zinc transporters, and induction of hepatic metallothionein. Zinc deficiency may manifest itself in many ways in liver disease, including skin lesions, poor wound healing/liver regeneration, altered mental status, or altered immune function. Zinc supplementation has been documented to block/attenuate experimental ALD through multiple processes, including stabilization of gut-barrier function, decreasing endotoxemia, decreasing proinflammatory cytokine production, decreasing oxidative stress, and attenuating apoptotic hepatocyte death. Clinical trials in human liver disease are limited in size and quality, but it is clear that zinc supplementation reverses clinical signs of zinc deficiency in patients with liver disease. Some studies suggest improvement in liver function in both ALD and hepatitis C following zinc supplementation, and 1 study suggested improved fibrosis markers in hepatitis C patients. The dose of zinc used for treatment of liver disease is usually 50 mg of elemental zinc taken with a meal to decrease the potential side effect of nausea.
Assuntos
Deficiências Nutricionais/complicações , Suplementos Nutricionais , Hepatopatias/etiologia , Oligoelementos/deficiência , Zinco/deficiência , Animais , Deficiências Nutricionais/tratamento farmacológico , Deficiências Nutricionais/metabolismo , Hepatite C/tratamento farmacológico , Hepatite C/etiologia , Hepatite C/metabolismo , Humanos , Hepatopatias/tratamento farmacológico , Hepatopatias/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Oligoelementos/metabolismo , Oligoelementos/uso terapêutico , Zinco/metabolismo , Zinco/uso terapêuticoRESUMO
More than 20% of Americans have nonalcoholic fatty liver disease (NAFLD), and this is, by far, the leading cause of abnormal liver enzymes in the United States. Nonalcoholic steatohepatitis (NASH), a more serious form of NAFLD, can proceed to cirrhosis and even hepatocellular carcinoma. These liver diseases represent the hepatic component of the metabolic syndrome, and this spectrum of liver disease represents a major health problem both in the United States and worldwide. Hepatic steatosis is closely linked to nutrition, including obesity, possibly high-fructose corn syrup consumption and consumption of certain types of fats. There are a variety of second insults or "hits" that appear to transform simple steatosis into NASH, with some of these second hits including certain proinflammatory cytokines, oxidative stress and possibly industrial toxins. In certain underdeveloped countries, it appears likely that industrial toxins play a role in NASH, and there is increasing interest in the potential interaction of industrial toxins and nutrients. Moreover, optimal therapy for NAFLD appears to include lifestyle modification with exercise, diet and weight loss. Certain nutrients may also be of benefit. Important areas for future research are the effect(s) of nutritional supplements on NAFLD/NASH and the effects of industrial toxins.