RESUMO
The Miconia genus is traditionally used in folk medicine in Brazil and other tropical American countries and is represented by 282 species in this region. It is a multifaceted genus of medicinal plants widely used to treat rheumatoid arthritis (RA), pain, inflammatory diseases, and many more therapeutic applications. In the present study, we systematically identify and discuss the literature on in vivo and in vitro studies focusing on the therapeutic potentials and related molecular mechanisms of the Miconia genus. The review also assessed phytochemicals and their pharmacological properties and considered safety concerns related to the genus. Literature searches to identify studies on the Miconia genus were carried out through four main electronic databases, namely PubMed, Embase, Scopus, and Web of Science limited to Medical Subjects Headings (MeSH) and Descriptores en Ciencias de la Salud (DCS) (Health Sciences Descriptors) to identify studies published up to December 2022. The relevant information about the genus was gathered using the keywords 'Miconia', 'biological activities', 'therapeutic mechanisms', 'animal model, 'cell-line model', 'antinociceptive', 'hyperalgesia', 'anti-inflammatory', and 'inflammation'. The therapeutic potentials and mechanisms of action of 14 species from genus Miconia were examined in 18 in vitro studies and included their anti-inflammatory, anticancer, analgesic, antibacterial, cytotoxic, mutagenic, antioxidant, anti-leishmanial, antinociceptive, schistosomicidal, and anti-osteoarthritis potentials, and in eight in vivo studies, assessing their analgesic, antioxidant, antinociceptive, and anti-osteoarthritis activities. Some of the main related molecular mechanisms identified are the modulation of cytokines such as IL-1ß, IL-6, and TNF-α, as well as the inhibition of inflammatory mediators and prostaglandin synthesis. The limited number of studies showed that commonly available species from the genus Miconia are safe for consumption. Miconia albicans Sw.Triana and Miconia rubiginosa (Bonpl.) DC was the most frequently used species and showed significant efficacy and potential for developing safe drugs to treat pain and inflammation.
RESUMO
This review aims to identify in vivo studies investigating the potential of plant substances and their natural molecules in managing inflammatory bowel disease (IBD). Specifically, the objective is to examine the impact of these substances on interleukins and other key inflammatory signaling markers. Relevant articles published up to December 2022 were identified through a search of the PubMed, Scopus, Web of Science, and Embase databases. The search used keywords including "inflammatory bowel disease", "medicinal plants", "natural molecules", "anti-inflammatory", and "ulcerative colitis", and identified 1,878 potentially relevant articles, of which 89 were included in this review after completion of the selection process. This study provides preclinical data on natural products (NPs) that can potentially treat IBD, including ulcerative colitis. The main actions of these NPs relate to their effects on nuclear factor kappa B (NF-κB), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the regulation of T helper 17/regulatory T cells balance, and oxidative stress. The ability of these NPs to inhibit intestinal inflammation appears to be dependent on lowering levels of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, and IL-17, via the Jun N-terminal kinase (JNK)1, NF-κß-p65, and STAT3 pathways. In addition, NPs were shown to reduce oxidative stress and the severity of ulcerative colitis, as well as increase the activity of antioxidant enzymes. These actions suggest that NPs represent a promising treatment for IBD, and potentially have greater efficacy and safety than current treatments.
RESUMO
Morinda umbellata L. is a woody climber or liana distributed in south East Asia. It is a traditional medicinal plant with excellent curative effects against diarrhea, dysentery, and other stomach disorders. The present study was aimed to assess the effect of M. umbellata active fraction (MUAF) on various inflammatory mediators using lipopolysaccharide (LPS) induced in vivo model in Wistar rats. The effect of MUAF on secretion of TNF-α, IL-1ß, and IL-6 were evaluated in LPS-induced experimental animals. The expression of TNF-α, IL-1ß, IL-6, iNOS, COX-2, and nuclear factor NF-κB genes were also evaluated. The gas chromatography-mass spectrometry (GC-MS) analysis of the active fraction was carried out to identify the active compounds present in MUAF. The results of oral acute toxicity suggested the non-toxic nature of MUAF. GC-MS analysis of the MUAF leaves revealed the presence of 8 compounds. The study demonstrated that the proinflammatory cytokines such as TNF-α, IL-1ß, and IL-6 were significantly inhibited by MUAF in a dose-dependent manner. Moreover, MUAF down-regulated the expression of TNF-α, IL-1ß, IL-6, iNOS, COX-2, and NF-κB genes. Our research findings suggest that the presence of anti-inflammatory compounds in MUAF can effectively inhibit LPS-induced proinflammatory cytokines TNF-α, IL-ß, and IL-6 in vivo. It also suppressed the over expression of TNF-α, IL-1ß, IL-6, iNOS, and COX-2 possibly via downregulating NF-κB activation.
RESUMO
Nutrients are essential for plant growth and development and influence overall agricultural production. Phosphorus (P) is a major nutrient required for many physiological and biochemical functions of a plant. Phosphate rock is the major source of phosphate fertilizer but is becoming increasingly limited in both developing and developed countries. The resources of phosphate rock need to be conserved, and import dependency on phosphate fertilizer needs to be minimized; this will help increase the availability of phosphate fertilizer over the next 300 yr. Climate change creates new challenges in the management of nutrients including P, affecting the overall production of crops. The availability, acquisition, and translocation of P are influenced by the fluctuation of temperatures, pH, drought, and elevated CO2 . Both lower and higher soil temperatures reduce uptake and translocation of P. High soil pH affects P concentration and decreases the rate of plant P uptake. Low soil pH decreases the activity of soil microorganisms, the rate of transpiration, and P uptake and utilization. Elevated CO2 decreases P uptake from soil by the plants. Future research is needed on chemical, molecular, microbiological, and physiological aspects to improve the understanding on how temperature, pH, drought, and elevated CO2 affect the availability, acquisition, and transport of P by plants. Better P management strategies are required to secure the P supply to ensure long-term protection of soil fertility and to avoid environmental impacts such as eutrophication and water pollution, ensuring sustainable food production.