Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 71: 653-662, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987756

RESUMO

The production of stable suspensions of strontium-substituted hydroxyapatite (Sr-HA) nanopowders, as Sr ions vector for bone tissue regeneration, was carried out in the present work. Sr-HA nanopowders were synthesized via aqueous precipitation methods using Sr2+ amount from 0 to 100mol% and were characterized by several complementary techniques such as solid-state Nuclear Magnetic Resonance spectroscopy, X-ray diffraction, Infrared spectroscopy, N2 physisorption and Transmission Electron Microscopy. The substitution of Ca2+ with Sr2+ in HA is always isomorphic with gradual evolution between the two limit compositions (containing 100% Ca and 100% Sr), this pointing out the homogeneity of the synthesized nanopowders and the complete solubility of strontium in HA lattice. Strontium addition is responsible for an increasing c/a ratio in the triclinic unit cell. A significant variation of the nanopowders shape and dimension is also observed, a preferential growth along the c-axis direction being evident at higher strontium loads. Modifications in the local chemical environment of phosphate and hydroxyl groups in the apatite lattice are also observed. Stable suspensions were produced by dispersing the synthesized nanopowders in bovine serum albumin. Characterization by Dynamic Light Scattering and ζ-potential determination allowed to show that Ca2+→Sr2+ substitution influences the hydrodynamic diameter, which is always twice the particles size determined by TEM, the nanoparticles being always negatively charged as a result from the albumin rearrangement upon the interaction with nanoparticles surface. The biocompatibility of the suspensions was studied in terms of cell viability, apoptosis, proliferation and morphology, using osteosarcoma cell line SAOS-2. The data pointed out an increased cell proliferation for HA nanoparticles containing larger Sr2+ load, the cells morphology remaining essentially unaffected.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Durapatita , Nanopartículas/química , Estrôncio , Animais , Apoptose/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Durapatita/síntese química , Durapatita/química , Durapatita/farmacologia , Humanos , Estrôncio/química , Estrôncio/farmacologia
2.
Bioresour Technol ; 102(5): 4285-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21232947

RESUMO

This study reports the conversion of Jatrophacurcas L. oil to biodiesel catalyzed by sulfated zirconia loaded on alumina catalyst using response surface methodology (RSM), specifically to study the effect of interaction between process variables on the yield of biodiesel. The transesterification process variables studied were reaction temperature, reaction duration, molar ratio of methanol to oil and catalyst loading. Results from this study revealed that individual as well as interaction between variables significantly affect the yield of biodiesel. With this information, it was found that 4h of reaction at 150°C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt.% for catalyst loading gave an optimum biodiesel yield of 90.32 wt.%. The fuel properties of Jatropha biodiesel were characterized and it indeed met the specification for biodiesel according to ASTM D6751.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Jatropha/química , Óleos de Plantas/química , Sulfatos/química , Zircônio/química , Óxido de Alumínio , Catálise , Cromatografia Gasosa , Esterificação , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA