Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Mol Biosci ; 8: 695205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395527

RESUMO

The deficit of human ornithine aminotransferase (hOAT) is responsible for gyrate atrophy (GA), a rare recessive inherited disorder. Although more than 60 disease-associated mutations have been identified to date, the molecular mechanisms explaining how each mutation leads to the deficit of OAT are mostly unknown. To fill this gap, we considered six representative missense mutations present in homozygous patients concerning residues spread over the hOAT structure. E. coli expression, spectroscopic, kinetic and bioinformatic analyses, reveal that the R154L and G237D mutations induce a catalytic more than a folding defect, the Q90E and R271K mutations mainly impact folding efficiency, while the E318K and C394Y mutations give rise to both folding and catalytic defects. In a human cellular model of disease folding-defective variants, although at a different extent, display reduced protein levels and/or specific activity, due to increased aggregation and/or degradation propensity. The supplementation with Vitamin B6, to mimic a treatment strategy available for GA patients, does not significantly improve the expression/activity of folding-defective variants, in contrast with the clinical responsiveness of patients bearing the E318K mutation. Thus, we speculate that the action of vitamin B6 could be also independent of hOAT. Overall, these data represent a further effort toward a comprehensive analysis of GA pathogenesis at molecular and cellular level, with important relapses for the improvement of genotype/phenotype correlations and the development of novel treatments.

2.
Free Radic Biol Med ; 117: 191-201, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29427792

RESUMO

STAT1 and STAT3 are two transcription factors involved in a lot of cellular functions such as immune response, proliferation, apoptosis, and cell survival. A number of literature evidences described a yin-yang relationship between activation of STAT1 and STAT3 in neurodegenerative disorders where STAT1 exerts a pro-apoptotic effect whereas STAT3 shows neuroprotective properties through the inhibition of apoptosis. Although the role of oxidative-stress in the pathogenesis of neurodegeneration is clearly described, its influence in the regulation of these pathways is poorly understood. Herein, we demonstrate that H2O2 rapidly induces phosphorylation of STAT1 whereas it is not able to influence phosphorylation of STAT3 in mouse microglia BV2 cells. The analysis of the molecular mechanism of STATs signaling reveals that H2O2 induces S-glutathionylation of both STAT1 and STAT3. The same post-translational event exerts an opposing role in the regulation of STAT1 and STAT3 signaling. These data not only confirm redox sensibility of STAT3 signaling but also reveal for the first time that STAT1 is susceptible to redox regulation. A deep study of the molecular mechanism of STAT1 redox regulation, identifies Cys324 and Cys492 as the main targets of S-glutathionylation and confirms that S-glutathionylation does not impair JAK2 mediated STAT1 tyrosine phosphorylation. These results demonstrate that both phosphorylation and glutathionylation contribute to activation of STAT1 during oxidative stress and underline that the same post-translation event exerts an opposing role in the regulation of STAT1 and STAT3 signaling in microglia cells.


Assuntos
Ativação Enzimática/fisiologia , Microglia/metabolismo , Estresse Oxidativo/fisiologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , Oxidantes/farmacologia , Fosforilação , Transdução de Sinais/fisiologia
3.
Hum Mol Genet ; 24(19): 5500-11, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26199318

RESUMO

Vitamin B6 in the form of pyridoxine (PN) is one of the most widespread pharmacological therapies for inherited diseases involving pyridoxal phosphate (PLP)-dependent enzymes, including primary hyperoxaluria type I (PH1). PH1 is caused by a deficiency of liver-peroxisomal alanine: glyoxylate aminotransferase (AGT), which allows glyoxylate oxidation to oxalate leading to the deposition of insoluble calcium oxalate in the kidney. Only a minority of PH1 patients, mostly bearing the F152I and G170R mutations, respond to PN, the only pharmacological treatment currently available. Moreover, excessive doses of PN reduce the specific activity of AGT in a PH1 cellular model. Nevertheless, the possible effect(s) of other B6 vitamers has not been investigated previously. Here, we compared the ability of PN in rescuing the effects of the F152I and G170R mutations with that of pyridoxamine (PM) and PL. We found that supplementation with PN raises the intracellular concentration of PN phosphate (PNP), which competes with PLP for apoenzyme binding leading to the formation of an inactive AGT-PNP complex. In contrast, PNP does not accumulate in the cell upon PM or PL supplementation, but higher levels of PLP and PM phosphate (PMP), the two active forms of the AGT coenzyme, are found. This leads to an increased ability of PM and PL to rescue the effects of the F152I and G170R mutations compared with PN. A similar effect was also observed for other folding-defective AGT variants. Thus, PM and PL should be investigated as matter of importance as therapeutics for PH1 patients bearing folding mutations.


Assuntos
Hiperoxalúria Primária/genética , Piridoxal/farmacologia , Piridoxamina/farmacologia , Piridoxina/farmacologia , Transaminases/química , Complexo Vitamínico B/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Hiperoxalúria Primária/tratamento farmacológico , Mutação/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Transaminases/genética
4.
Genetics ; 192(3): 831-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22923379

RESUMO

Many human diseases are caused by genetic mutations that decrease protein stability. Such mutations may not specifically affect an active site, but can alter protein folding, abundance, or localization. Here we describe a high-throughput cell-based stability assay, IDESA (intra-DHFR enzyme stability assay), where stability is coupled to cell proliferation in the model yeast, Saccharomyces cerevisiae. The assay requires no prior knowledge of a protein's structure or activity, allowing the assessment of stability of proteins that have unknown or difficult to characterize activities, and we demonstrate use with a range of disease-relevant targets, including human alanine:glyoxylate aminotransferase (AGT), superoxide dismutase (SOD-1), DJ-1, p53, and SMN1. The assay can be carried out on hundreds of disease alleles in parallel or used to identify stabilizing small molecules (pharmacological chaperones) for unstable alleles. As demonstration of the general utility of this assay, we analyze stability of disease alleles of AGT, deficiency of which results in the kidney stone disease, primary hyperoxaluria type I, identifying mutations that specifically affect the protein-active site chemistry.


Assuntos
Alelos , Estabilidade Enzimática/genética , Genes Reporter , Ensaios de Triagem em Larga Escala , Dobramento de Proteína , Avaliação Pré-Clínica de Medicamentos , Estabilidade Enzimática/efeitos dos fármacos , Estudos de Associação Genética , Humanos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína/efeitos dos fármacos , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Sensibilidade e Especificidade , Transaminases/química , Transaminases/genética , Transaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA