Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 272: 113943, 2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-33617967

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xuesaitong (XST) is a traditional Chinese medicine injection with neuroprotective properties and has been extensively used to treat stroke for many years. The main component of XST is Panax notoginseng saponins (PNS), which is the main extract of the Chinese herbal medicine Panax notoginseng. AIM OF THE STUDY: In this study, we investigated whether XST provided long-term neuroprotection by inhibiting neurite outgrowth inhibitor-A (Nogo-A) and the ROCKII pathway in experimental rats after middle cerebral artery occlusion (MCAO) and in SH-SY5Y cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS: Rats with permanent MCAO were administered XST, Y27632, XST plus Y27632, and nimodipine for 14 and 28 days. Successful MCAO onset was confirmed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Neurological deficit score (NDS) was used to assess neurological impairment. Hematoxylin-eosin (HE) staining and immunohistochemical (IHC) analysis of synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) were performed to evaluate cerebral ischemic injury and the neuroprotective capability of XST. Nogo-A levels and the ROCKII pathway were detected by IHC analysis, western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR) to explore the protective mechanism of XST. OGD/R model was established in SH-SY5Y cells. Cell counting kit 8 (CCK8) was applied to detect the optimum OGD time and XST concentration. The expression levels Nogo-A and ROCKII pathway were determined using western blotting. RESULTS: Our results showed that XST reduced neurological dysfunction and pathological damage, promoted weight gain and synaptic regeneration, reduced Nogo-A mRNA and protein levels, and inhibited the ROCKII pathway in MCAO rats. CCK8 assay displayed that the optimal OGD time and optimal XST concentration were 7 h and 20 µg/mL respectively in SH-SY5Y cells. XST could evidently inhibit OGD/R-induced Nogo-A protein expression and ROCKII pathway activation in SH-SY5Y cells. CONCLUSIONS: The present study suggested that XST exerted long-term neuroprotective effects that assisted in stroke recovery, possibly through inhibition of the ROCKII pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Saponinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Proteínas Nogo/antagonistas & inibidores , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Panax notoginseng/química , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Sinaptofisina/metabolismo , Fatores de Tempo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-32802113

RESUMO

OBJECTIVE: This study investigated whether Panax notoginseng saponins (PNS) extracted from Panax notoginseng (Bruk.) F. H. Chen played a neuroprotective role by affecting the EGFR/PI3K/AKT pathway in oxygen-glucose deprived (OGD) SH-SY5Y cells. MATERIALS AND METHODS: Different groups of OGD SH-SY5Y cells were treated with varying doses of PNS, PNS + AG1478 (a specific inhibitor of EGFR), or AG1478 for 16 hours. CCK8, Annexin V-FITC/PI apoptosis analysis, and LDH release analysis were used to determine cell viability, apoptosis rate, and amounts of LDH. Quantitative real-time PCR (q-RT-PCR) and western blotting were used to measure mRNA and proteins levels of p-EGFR/EGFR, p-PI3K/PI3K, and p-AKT/AKT in SH-SY5Y cells subjected to OGD. RESULTS: PNS significantly enhanced cell viability, reduced apoptosis, and weakened cytotoxicity by inhibiting the release of LDH. The mRNA expression profiles of EGFR, PI3K, and AKT showed no difference between model and other groups. Additionally, ratios of p-EGFR, p-PI3K, and p-AKT to EGFR, PI3K, and AKT proteins expression, respectively, all increased significantly. CONCLUSIONS: These findings indicate that PNS enhanced neuroprotective effects by activating the EGFR/PI3K/AKT pathway and elevating phosphorylation levels in OGD SH-SY5Y cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA