Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dev Psychobiol ; 65(7): e22426, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37860900

RESUMO

Prenatal ethanol exposure (PEE) causes several neurobehavioral impairments in the fetus. Postnatal days (PDs) 4-9 in rodents are considered equivalent to the third trimester of gestation in humans. This period is characterized by high rates of synaptogenesis and myelination and the maturation of key structures and transmitter systems. Nutritional supplements, such as folate, have gained attention as putative treatments to mitigate detrimental effects of PEE. Folate is crucial for DNA synthesis and amino acid metabolism and heightens antioxidant defenses. The present study examined neurobehavioral effects of the concurrent administration of folate (20 mg/kg/day) and ethanol (5 g/kg/day) during PDs 4-9 in male and female Wistar rats. During PDs 16-18, the rat pups were tested for anxiety-like and exploratory activity in the light-dark box (LDB), open field (OF), and concentric square field (CSF) tests. After weaning, they were tested for sucrose preference and ethanol intake. Neonatal ethanol exposure reduced body weight in infancy but did not enhance ethanol self-administration or significantly affect performance in the OF or LDB. Neonatal ethanol exposure also reduced sucrose intake in the preference test and increased shelter-seeking in the CSF, and folate significantly inhibited these effects. The present findings suggest that folate, a treatment that is devoid of serious side effects, can ameliorate some neurobehavioral effects of PEE.


Assuntos
Etanol , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Ratos , Animais , Masculino , Feminino , Etanol/farmacologia , Ratos Wistar , Ácido Fólico/farmacologia , Sacarose
2.
Mar Drugs ; 15(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635651

RESUMO

Visceral pain is very common and represents a major unmet clinical need for which current pharmacological treatments are often insufficient. Tetrodotoxin (TTX) is a potent neurotoxin that exerts analgesic actions in both humans and rodents under different somatic pain conditions, but its effect has been unexplored in visceral pain. Therefore, we tested the effects of systemic TTX in viscero-specific mouse models of chemical stimulation of the colon (intracolonic instillation of capsaicin and mustard oil) and intraperitoneal cyclophosphamide-induced cystitis. The subcutaneous administration of TTX dose-dependently inhibited the number of pain-related behaviors in all evaluated pain models and reversed the referred mechanical hyperalgesia (examined by stimulation of the abdomen with von Frey filaments) induced by capsaicin and cyclophosphamide, but not that induced by mustard oil. Morphine inhibited both pain responses and the referred mechanical hyperalgesia in all tests. Conditional nociceptor­specific Nav1.7 knockout mice treated with TTX showed the same responses as littermate controls after the administration of the algogens. No motor incoordination after the administration of TTX was observed. These results suggest that blockade of TTX-sensitive sodium channels, but not Nav1.7 subtype alone, by systemic administration of TTX might be a potential therapeutic strategy for the treatment of visceral pain.


Assuntos
Medição da Dor/efeitos dos fármacos , Tetrodotoxina/farmacologia , Dor Visceral/tratamento farmacológico , Analgésicos/farmacologia , Animais , Capsaicina/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Cistite/tratamento farmacológico , Cistite/metabolismo , Modelos Animais de Doenças , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfina/farmacologia , Mostardeira , Nociceptores/metabolismo , Óleos de Plantas/farmacologia , Canais de Sódio/metabolismo , Dor Visceral/metabolismo
3.
J Physiol ; 595(8): 2661-2679, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28105664

RESUMO

KEY POINTS: Voltage-gated sodium channels play a fundamental role in determining neuronal excitability. Specifically, voltage-gated sodium channel subtype NaV 1.7 is required for sensing acute and inflammatory somatic pain in mice and humans but its significance in pain originating from the viscera is unknown. Using comparative behavioural models evoking somatic and visceral pain pathways, we identify the requirement for NaV 1.7 in regulating somatic (noxious heat pain threshold) but not in visceral pain signalling. These results enable us to better understand the mechanisms underlying the transduction of noxious stimuli from the viscera, suggest that the investigation of pain pathways should be undertaken in a modality-specific manner and help to direct drug discovery efforts towards novel visceral analgesics. ABSTRACT: Voltage-gated sodium channel NaV 1.7 is required for acute and inflammatory pain in mice and humans but its significance for visceral pain is unknown. Here we examine the role of NaV 1.7 in visceral pain processing and the development of referred hyperalgesia using a conditional nociceptor-specific NaV 1.7 knockout mouse (NaV 1.7Nav1.8 ) and selective small-molecule NaV 1.7 antagonist PF-5198007. NaV 1.7Nav1.8 mice showed normal nociceptive behaviours in response to intracolonic application of either capsaicin or mustard oil, stimuli known to evoke sustained nociceptor activity and sensitization following tissue damage, respectively. Normal responses following induction of cystitis by cyclophosphamide were also observed in both NaV 1.7Nav1.8 and littermate controls. Loss, or blockade, of NaV 1.7 did not affect afferent responses to noxious mechanical and chemical stimuli in nerve-gut preparations in mouse, or following antagonism of NaV 1.7 in resected human appendix stimulated by noxious distending pressures. However, expression analysis of voltage-gated sodium channel α subunits revealed NaV 1.7 mRNA transcripts in nearly all retrogradely labelled colonic neurons, suggesting redundancy in function. By contrast, using comparative somatic behavioural models we identify that genetic deletion of NaV 1.7 (in NaV 1.8-expressing neurons) regulates noxious heat pain threshold and that this can be recapitulated by the selective NaV 1.7 antagonist PF-5198007. Our data demonstrate that NaV 1.7 (in NaV 1.8-expressing neurons) contributes to defined pain pathways in a modality-dependent manner, modulating somatic noxious heat pain, but is not required for visceral pain processing, and advocate that pharmacological block of NaV 1.7 alone in the viscera may be insufficient in targeting chronic visceral pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/deficiência , Nociceptores/metabolismo , Dor Visceral/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Capsaicina/toxicidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mostardeira/toxicidade , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor Nociceptiva/induzido quimicamente , Dor Nociceptiva/genética , Dor Nociceptiva/metabolismo , Nociceptores/efeitos dos fármacos , Óleos de Plantas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Dor Visceral/induzido quimicamente , Dor Visceral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA