Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Rev Immunol ; 31(2): 166-73, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22449076

RESUMO

Bone marrow kinase on chromosome X (BMX) is a cytosolic tyrosine kinase and a member of the TEC kinase family. BMX is expressed in hematopoietic cells of the myeloid lineage where it participates in the immune response. It is also involved in the response to ischemia and pressure overload in the endocardium and the cardiac endothelium. Moreover, BMX is expressed in several types of cancers and very recently has been shown to mediate the survival and tumorigenicity of glioblastoma cancer stem cells. In the inflammatory response BMX regulates the secretion of proinflammatory cytokines induced by TNFα, IL-1ß, and TLR agonists. It is required for the activation of the MAP kinase and NFκB pathways and acts at the level of the essential TAK1/TAB complex. Cellular regulation of the IL-8 promoter by BMX is dependent on membrane localization mediated by its pleckstrin homology domain, as well as on BMX kinase activity. BMX deficiency confers protection from arthritis in a mouse model known to be dependent on macrophages and IL-1ß. Genetic replacement of BMX with a kinase-inactive allele surprisingly restored susceptibility to arthritis, suggesting that in vivo BMX kinase activity can be dispensable. This review summarizes recent advances in the knowledge of BMX biology and their relevance for translational medicine.


Assuntos
Doenças Cardiovasculares/metabolismo , Inflamação/metabolismo , Neoplasias/metabolismo , Proteínas Tirosina Quinases/fisiologia , Animais , Artrite/metabolismo , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia
2.
J Immunol ; 186(10): 6014-23, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21471444

RESUMO

Inflammatory cytokines like TNF play a central role in autoimmune disorders such as rheumatoid arthritis. We identified the tyrosine kinase bone marrow kinase on chromosome X (BMX) as an essential component of a shared inflammatory signaling pathway. Transient depletion of BMX strongly reduced secretion of IL-8 in cell lines and primary human cells stimulated by TNF, IL-1ß, or TLR agonists. BMX was required for phosphorylation of p38 MAPK and JNK, as well as activation of NF-κB. The following epistasis analysis indicated that BMX acts downstream of or at the same level as the complex TGF-ß activated kinase 1 (TAK1)-TAK1 binding protein. At the cellular level, regulation of the IL-8 promoter required the pleckstrin homology domain of BMX, which could be replaced by an ectopic myristylation signal, indicating a requirement for BMX membrane association. In addition, activation of the IL-8 promoter by in vitro BMX overexpression required its catalytic activity. Genetic ablation of BMX conferred protection in the mouse arthritis model of passive K/BxN serum transfer, confirming that BMX is an essential mediator of inflammation in vivo. However, genetic replacement with a catalytically inactive BMX allele was not protective in the same arthritis animal model. We conclude that BMX is an essential component of inflammatory cytokine signaling and that catalytic, as well as noncatalytic functions of BMX are involved.


Assuntos
Artrite/imunologia , Proteínas Tirosina Quinases/metabolismo , Animais , Artrite/metabolismo , Proteínas Sanguíneas , Linhagem Celular , Modelos Animais de Doenças , Células HeLa , Humanos , Immunoblotting , Interleucina-1beta/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , NF-kappa B/metabolismo , Fosfoproteínas , Fosforilação , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Necrose Tumoral/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA