Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 294: 118660, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896221

RESUMO

One possible way to reduce the environmental impacts of pesticides is by nanostructuring biocides in nanocarriers because this promotes high and localized biocidal activity and can avoid toxicity to non-target organisms. Neem oil (NO) is a natural pesticide with toxicity concerns to plants, fish, and other organisms. Thus, loading NO in a safe nanocarrier can contribute to minimizing its toxicity. For this study, we have characterized the integrity of a nanosilica-neem oil-based biocide delivery system (SiO2NP#NO BDS) and evaluated its effectiveness in reducing NO toxicity by the Allium cepa test. NO, mainly consisted of unsaturated fatty acids, was well binded to the SiO2NP with BTCA crosslinker. Overall, this material presented all of its pores filled with the NO with fatty acid groups at both the surface and bulk level of the nanoparticle. The thermal stability of NO was enhanced after synthesis, and the NO was released as zero-order model with a total of 20 days without burst release. The SiO2NP#NO BDS was effective in reducing the individual toxicity of NO to the plant system. NO in single form inhibited the seed germination of A. cepa (EC50 of 0.38 g L-1), and the effect was no longer observed at the BDS condition. Contrarily to the literature, the tested NO did not present cyto- and geno-toxic effects in A. cepa, which may relate to the concentration level and composition.


Assuntos
Desinfetantes , Glicerídeos , Cebolas/toxicidade , Terpenos , Animais , Desinfetantes/toxicidade , Glicerídeos/toxicidade , Nanopartículas , Cebolas/efeitos dos fármacos , Dióxido de Silício
2.
Ecotoxicol Environ Saf ; 180: 616-623, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31132557

RESUMO

Pyroligneous acid (PA) is a by-product of bio-oil, which is obtained by pyrolysis of the wood. This product has been tested for use in several areas, such as agriculture, as a promising green herbicide; however, there are few scientific data regarding its environmental impacts. For this study, an ecotoxicity testing battery, composed of Daphnia magna acute toxicity test, Allium cepa test and in vitro Comet assay with the rainbow trout gonad-2 cell fish line (RTG-2) were used to evaluate the acute toxicity and genotoxicity of PA obtained from fast pyrolysis of eucalyptus wood fines. The PA presented acute toxicity to D. magna (microcrustacea) with EC50 of 26.12 mg/L, and inhibited the seed germination (EC50 5.556 g/L) and root development (EC50 3.436 g/L) of A. cepa (higher plant). No signs of genotoxicity (chromosomal aberrations and micronuclei in A. cepa and primary DNA lesions in RTG-2 cells) were detected to this product. The acute toxicity and absence of genotoxicity may relate to the molecules found in the PA, being the phenolic fraction the key chemical candidate responsible for the toxicity observed. In addition, daphnids seem to be more sensitivity to the toxicity of PA than higher plants based on their EC50 values. This first ecotoxicological evaluation of PA from fast pyrolysis pointed out the need of determining environmental exposure limits to promote the safer agriculture use of this product, avoiding impacts to living organisms.


Assuntos
Poluentes Ambientais/toxicidade , Herbicidas/toxicidade , Terpenos/toxicidade , Animais , Linhagem Celular , Dano ao DNA , Daphnia/efeitos dos fármacos , Oncorhynchus mykiss/genética , Cebolas/efeitos dos fármacos , Cebolas/genética , Pirólise , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA