Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 172: 116249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340399

RESUMO

Maca (Lepidium meyenii) is a plant that grows in the central Andes region of Peru, and it has been reported to have various bioactive functions, such as improving or preventing osteoporosis, sexual dysfunction, and memory impairment. In this study, maca roots of various colors (yellow, red, or black) were extracted using different polar solvents (PE, HEX, or BuOH) to compare their effects on muscle differentiation. Among them, the red maca lipophilic extract, which showed the most effectiveness, was chosen for further investigation. Our results show that RMLE enhances muscle differentiation by inducing MyoD-E2A heterodimerization through the activation of the AKT/p38 pathway. Additionally, RMLE attenuated dexamethasone-induced muscle atrophy by inhibiting nuclear translocation of FoxO3a and expression of E3-ligase (MAFbx and MURF1) in vitro and in vivo. Therefore, based on these results suggest that lipophilic extract of maca, which can abundantly contain nonpolar compounds, macamides, can enhance the functional properties of maca in alleviating muscle homeostasis.


Assuntos
Lepidium , Proteínas Proto-Oncogênicas c-akt , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Dexametasona/farmacologia , Extratos Vegetais/farmacologia
2.
Biomed Pharmacother ; 163: 114810, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37163777

RESUMO

Garlic (Allium sativum L.) is a primary dietary component worldwide because of its health benefits and use as a traditional medicine. Elephant garlic (Allium ampeloprasum L.), a related species in the same genus, is less intense and sweeter than A. sativum. The object of this study was to investigate the alleviative effects of aged black garlic (ABG) and aged black elephant garlic (ABEG) on obesity and muscle atrophy induced by obesity in high fat diet-induced obese mice. We demonstrated that ABG and ABEG alleviated obesity and muscle atrophy and enhanced myogenic differentiation and myotube hypertrophy, and this effect was mediated by the upregulation of Akt/mTOR/p70S6K signaling. Furthermore, a candidate bioactive compound of ABG and ABEG was suggested in this study through analysis using gas chromatography-mass spectroscopy and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectroscopy. In conclusion, ABG and ABEG may alleviate obesity and treat obesity-induced muscle atrophy.


Assuntos
Allium , Alho , Animais , Camundongos , Alho/química , Camundongos Endogâmicos C57BL , Allium/química , Cebolas , Antioxidantes/farmacologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Obesidade/complicações , Obesidade/tratamento farmacológico , Dieta
3.
Nutrients ; 14(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364945

RESUMO

Akebia quinata, commonly called chocolate vine, has various bioactivities, including antioxidant and anti-obesity properties. However, the anti-obesity effects of bioconverted extracts of A. quinate have not been examined. In this study, A. quinata fruit extracts was bioconverted using the enzyme isolated from the soybean paste fungi Aspergillus kawachii. To determine whether the bioconversion process could influence the anti-obesity effects of A. quinata fruit extracts, we employed 3T3-L1 adipocytes and HFD-induced obese rats. We observed that the bioconverted fruit extract of A. quinata (BFE) afforded anti-obesity effects, which were stronger than that for the non-bioconverted fruit extract (FE) of A. quinata. In 3T3-L1 adipocytes, treatment with BFE at concentrations of 20 and 40 µg reduced intracellular lipids by 74.8 (p < 0.05) and 54.9% (p < 0.01), respectively, without inducing cytotoxicity in preadipocytes. Moreover, the oral administration of BFE at the concentration of 300 mg/kg/day significantly reduced body and adipose tissue weights (p < 0.01) in HFD-induced obese rats. Plasma cholesterol values were reduced, whereas HDL was increased in BFE receiving rats. Although FE could exert anti-obesity effects, BFE supplementation induced more robust effects than FE. These results could be attributed to the bioconversion-induced alteration of bioactive compound content within the extract.


Assuntos
Fármacos Antiobesidade , Dieta Hiperlipídica , Camundongos , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Fármacos Antiobesidade/farmacologia , Adipogenia , Frutas , Células 3T3-L1 , Obesidade/tratamento farmacológico , Obesidade/etiologia , Extratos Vegetais/farmacologia , Camundongos Endogâmicos C57BL
4.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502316

RESUMO

Farrerol (FA) is a flavanone isolated from the Chinese herbal medicine "Man-shan-hong" (Rhododendron dauricum L.). In the present study, FA decreased the viability of SKOV3 cells in a dose- and time-dependent manner, and it induced G2/M cell cycle arrest and cell apoptosis. Cell cycle distribution analysis via flow cytometry showed that FA decreased G1 populations and increased G2/M populations in SKOV3 cells. Additionally, Western blotting confirmed an increase in the expression level of proteins involved in the cell cycle, e.g., CDK and cyclins. FA-induced apoptosis in SKOV3 cells was also investigated using a TUNEL assay, and increased expression levels of proapoptotic factors, including Caspase-3 and poly ADP ribose polymerase (PARP), through the Extracellular signal-regulated kinase (ERK)/MAPK pathway were investigated. Proinflammatory cytokines (e.g., IL-6, TNF-α, and IL-1) have been identified as a driver of the pathological mechanisms underlying involuntary weight loss and impaired physical function, i.e., cachexia, during cancer; in the present study, we showed that farrerol attenuates TNF-α-induced lipolysis and increases adipogenic differentiation in 3T3-L1 cells. Thus, farrerol could potentially be used as an anticancer agent or anticachetic drug.


Assuntos
Cromonas/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Fator de Necrose Tumoral alfa/farmacologia , Apoptose , Ciclo Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA