Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Microbiol Biotechnol ; 32(9): 1103-1109, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36039387

RESUMO

Deoxypodophyllotoxin (DPT), a naturally occurring flavonolignan, possesses several pharmacological properties, including anticancer property. However, the mechanisms underlying DPT mode of action in oral squamous cell carcinoma (OSCC) remain unknown. This study aimed to investigate the anticancer effects of DPT on OSCC and the underlying mechanisms. Results of the MTT assay revealed that DPT significantly reduced the cell viability in a time- and dose-dependent manner. Flow cytometry analysis revealed that DPT induces apoptosis in OSCC cells in a dose-dependent manner. Moreover, DPT enhanced the production of mitochondrial reactive oxygen species (ROS) in OSCC cells. Mechanistically, DPT induced apoptosis in OSCC cells by suppressing the PI3K/AKT signaling pathway while activating the p38 MAPK signaling to regulate the expression of apoptotic proteins. Treatment with SC79, an AKT activator, reversed the effects of DPT on AKT signaling in OSCC cells. Taken together, these results provide the basis for the use of DPT in combination with conventional chemotherapy for the treatment of oral cancer.


Assuntos
Carcinoma de Células Escamosas , Flavonolignanos , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Medicamentos de Ervas Chinesas , Flavonolignanos/farmacologia , Flavonolignanos/uso terapêutico , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Podofilotoxina/análogos & derivados , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Phytomedicine ; 86: 153564, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33895649

RESUMO

BACKGROUND: The 3-deoxysappanchalcone (3-DSC), a chemical separated from Caesalpinia sappan L, has been substantiated to display anti-inflammatory, anti-influenza, and anti-allergy activities according to previous studies. However, the underlying mechanisms of action on esophageal cancer remain unknown. PURPOSE: The present research aims to survey the action mechanisms of 3-DSC in esophageal squamous cell carcinoma (ESCC) cells in vitro. METHODS: Evaluation of cytotoxicity was determined by MTT tetrazolium salt assay and soft agar assay. Cell cycle distribution, apoptosis induction, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), and multi-caspases activity were appreciated by Muse™ Cell Analyzer. The expressions of cell cycle- and apoptosis-related proteins were presented using Western blotting. RESULTS: 3-DSC blocked cell growth and colony formation ability in a concentration-dependent manner and invoked apoptosis, G2/M cell cycle arrest, ROS production, MMP depolarization, and multi-caspase activity. Furthermore, Western blotting results demonstrated that 3-DSC upregulated the expression of phospho (p)-c-jun NH2-terminal kinases (JNK), p-p38, cell cycle regulators, pro-apoptotic proteins, and endoplasmic reticulum (ER) stress-related proteins whereas downregulated the levels of anti-apoptotic proteins and cell cycle promoters. The effects of 3-DSC on ROS induction were counteracted by pretreatment with N-acetyl-L-cysteine (NAC). Also, our results indicated that p38 (SB203580) and JNK (SP600125) inhibitor slightly inhibited 3-DSC-induced apoptosis. These results showed that 3-DSC-related G2/M phase cell cycle arrest and apoptosis by JNK/p38 MAPK signaling pathway in ESCC cells were mediated by ROS. CONCLUSION: ROS generation by 3-DSC in cancer cells could be an attractive strategy for apoptosis of cancer cells by inducing cell cycle arrest, ER stress, MMP loss, multi-caspase activity, and JNK/p38 MAPK pathway. Our findings suggest that 3-DSC is a promising novel therapeutic candidate for both prevention and treatment of esophageal cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Chalconas/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
J Microbiol Biotechnol ; 31(4): 559-569, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33746190

RESUMO

As one of the major types of lung cancer, non-small cell lung cancer (NSCLC) accounts for the majority of cancer-related deaths worldwide. Treatments for NSCLC includes surgery, chemotherapy, and targeted therapy. Among the targeted therapies, resistance to inhibitors of the epidermal growth factor receptor (EGFR) is common and remains a problem to be solved. MET (hepatocyte growth factor receptor) amplification is one of the major causes of EGFR-tyrosine kinase inhibitor (TKI) resistance. Therefore, there exists a need to find new and more efficacious therapies. Deoxypodophyllotoxin (DPT) extracted from Anthriscus sylvestris roots exhibits various pharmacological activities including anti-inflammation and anti-cancer effects. In this study we sought to determine the anti-cancer effects of DPT on HCC827GR cells, which are resistant to gefitinib (EGFR-TKI) due to regulation of EGFR and MET and their related signaling pathways. To identify the direct binding of DPT to EGFR and MET, we performed pull-down, ATP-binding, and kinase assays. DPT exhibited competitive binding with ATP against the network kinases EGFR and MET and reduced their activities. Also, DPT suppressed the expression of p-EGFR and p-MET as well as their downstreat proteins p-ErbB3, p-AKT, and p-ERK. The treatment of HCC827GR cells with DPT induced high ROS generation that led to endoplasmic-reticulum stress. Accordingly, loss of mitochondrial membrane potential and apoptosis by multi-caspase activation were observed. In conclusion, these results demonstrate the apoptotic effects of DPT on HCC827GR cells and signify the potential of DPT to serve as an adjuvant anti-cancer drug by simultaneously inhibiting EGFR and MET.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/patologia , Podofilotoxina/análogos & derivados , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Antineoplásicos/farmacologia , Apiaceae/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Podofilotoxina/farmacologia , Transdução de Sinais
4.
Phytomedicine ; 80: 153355, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33039730

RESUMO

BACKGROUND: Lung cancer has the highest incidence and cancer-related mortality of all cancers worldwide. Its treatment is focused on molecular targeted therapy. c-MET plays an important role in the development and metastasis of various human cancers and has been identified as an attractive potential anti-cancer target. Podophyllotoxin (PPT), an aryltetralin lignan isolated from the rhizomes of Podophyllum species, has several pharmacological activities that include anti-viral and anti-cancer effects. However, the mechanism of the anti-cancer effects of PPT on gefitinib-sensitive (HCC827) or -resistant (MET-amplified HCC827GR) non-small cell lung cancer (NSCLC) cells remains unexplored. PURPOSE: In the present study, we investigated the underlying mechanisms of PPT-induced apoptosis in NSCLC cells and found that the inhibition of c-MET kinase activity contributed to PPT-induced cell death. METHODS: The regulation of c-MET by PPT was examined by pull-down assay, ATP-competitive binding assay, kinase activity assay, molecular docking simulation, and Western blot analysis. The cell growth inhibitory effects of PPT on NSCLC cells were assessed using the MTT assay, soft agar assay, and flow cytometry analysis. RESULTS: PPT could directly interact with c-MET and inhibit kinase activity, which further induced the apoptosis of HCC827GR cells. In contrast, PPT did not significantly affect EGFR kinase activity. PPT significantly inhibited the cell viability of HCC827GR cells, whereas the PPT-treated HCC827 cells showed a cell viability of more than 80%. PPT dose-dependently induced G2/M cell cycle arrest, as shown by the downregulation of cyclin B1 and cdc2, and upregulation of p27 expression in HCC827GR cells. Furthermore, PPT treatment induced Bad expression and downregulation of Mcl-1, survivin, and Bcl-xl expression, subsequently activating multi-caspases. PPT thereby induced caspase-dependent apoptosis in HCC827GR cells. CONCLUSION: These results suggest the potential of PPT as a c-MET inhibitor to overcome tyrosine kinase inhibitor resistance in lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Podofilotoxina/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Gefitinibe/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Podofilotoxina/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/metabolismo
5.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961992

RESUMO

Deoxypodophyllotoxin (DPT) derived from Anthriscus sylvestris (L.) Hoffm has attracted considerable interest in recent years because of its anti-inflammatory, antitumor, and antiviral activity. However, the mechanisms underlying DPT mediated antitumor activity have yet to be fully elucidated in esophageal squamous cell carcinoma (ESCC). We show here that DPT inhibited the kinase activity of epidermal growth factor receptor (EGFR) directly, as well as phosphorylation of its downstream signaling kinases, AKT, GSK-3ß, and ERK. We confirmed a direct interaction between DPT and EGFR by pull-down assay using DPT-beads. DPT treatment suppressed ESCC cell viability and colony formation in a time- and dose-dependent manner, as shown by MTT analysis and soft agar assay. DPT also down-regulated cyclin B1 and cdc2 expression to induce G2/M phase arrest of the cell cycle and upregulated p21 and p27 expression. DPT treatment of ESCC cells triggered the release of cytochrome c via loss of mitochondrial membrane potential, thereby inducing apoptosis by upregulation of related proteins. In addition, treatment of KYSE 30 and KYSE 450 cells with DPT increased endoplasmic reticulum stress, reactive oxygen species generation, and multi-caspase activation. Consequently, our results suggest that DPT has the potential to become a new anticancer therapeutic by inhibiting EGFR mediated AKT/ERK signaling pathway in ESCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Lignanas/farmacologia , Podofilotoxina/análogos & derivados , Apiaceae/química , Apoptose/genética , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Podofilotoxina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962182

RESUMO

Global environmental pollution has led to human exposure to ultraviolet (UV) radiation due to the damaged ozone layer, thereby increasing the incidence and death rate of skin cancer including both melanoma and non-melanoma. Overexpression and activation of V-akt murine thymoma viral oncogene homolog (AKT, also known as protein kinase B) and related signaling pathways are major factors contributing to many cancers including lung cancer, esophageal squamous cell carcinoma and skin cancer. Although BRAF inhibitors are used to treat melanoma, further options are needed due to treatment resistance and poor efficacy. Depletion of AKT expression and activation, and related signaling cascades by its inhibitors, decreases the growth of skin cancer and metastasis. Here we have focused the effects of AKT and related signaling (PI3K/AKT/mTOR) pathways by regulators derived from plants and suggest the need for efficient treatment in skin cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Camundongos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
7.
Phytother Res ; 34(8): 2032-2043, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32144852

RESUMO

Esophageal cancer (EC) is one of the leading causes to cancer death in the worldwide and major population of EC is esophageal squamous cell carcinoma (ESCC). Still, ESCC-targeted therapy has not been covered yet. In the present study we have identified that Licochalcone B (Lico B) inhibited the ESCC growth by directly blocking the Janus kinase (JAK) 2 activity and its downstream signaling pathway. Lico B suppressed KYSE450 and KYSE510 ESCC cell growth, arrested cell cycle at G2/M phase and induced apoptosis. Direct target of Lico B was identified by kinase assay and verified with in vitro and ex vivo binding. Computational docking model predicted for Lico B interaction to ATP-binding pocket of JAK2. Furthermore, treatment of JAK2 clinical medicine AZD1480 to ESCC cells showed similar tendency with Lico B. Thus, JAK2 downstream signaling proteins phosphorylation of STAT3 at Y705 and S727 as well as STAT3 target protein Mcl-1 expression was decreased with treatment of Lico B. Our results suggest that Lico B inhibits ESCC cell growth, arrests cell cycle and induces apoptosis, revealing the underlying mechanism involved in JAK2/STAT3 signaling pathways after Lico B treatment. It might provide potential role of Lico B in the treatment of ESCC.


Assuntos
Chalconas/uso terapêutico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Janus Quinase 2/antagonistas & inibidores , Apoptose , Linhagem Celular Tumoral , Chalconas/farmacologia , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos
8.
Biomolecules ; 10(2)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070026

RESUMO

Licochalcone D (LCD), a flavonoid isolated from a Chinese medicinal plant Glycyrrhizainflata, has a variety of pharmacological activities. However, the anti-cancer effects of LCD on non-small cell lung cancer (NSCLC) have not been investigated yet. The amplification of MET (hepatocyte growth factor receptor) compensates for the inhibition of epidermal growth factor receptor (EGFR) activity due to tyrosine kinase inhibitor (TKI), leading to TKI resistance. Therefore, EGFR and MET can be attractive targets for lung cancer. We investigated the anti-proliferative and apoptotic effects of LCD in lung cancer cells HCC827 (gefitinib-sensitive) and HCC827GR (gefitinib-resistant) through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, pull-down/kinase assay, cell cycle analysis, Annexin-V/7-ADD staining, reactive oxygen species (ROS) assay, mitochondrial membrane potential (MMP) assay, multi-caspase assay, and Western blot analysis. The results showed that LCD inhibited phosphorylation and the kinase activity of EGFR and MET. In addition, the predicted pose of LCD was competitively located at the ATP binding site. LCD suppressed lung cancer cells growth by blocking cell cycle progression at the G2/M transition and inducing apoptosis. LCD also induced caspases activation and poly (ADP-ribose) polymerase (PARP) cleavage, thus displaying features of apoptotic signals. These results provide evidence that LCD has anti-tumor effects by inhibiting EGFR and MET activities and inducing ROS-dependent apoptosis in NSCLC, suggesting that LCD has the potential to treat lung cancer.


Assuntos
Chalconas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Phytother Res ; 34(2): 388-400, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31698509

RESUMO

Patients with non-small-cell lung cancer (NSCLC) containing epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to tyrosine kinase inhibitor gefitinib; however, the treatment is less effective over time. Gefitinib resistance mechanisms include MET gene amplification. A therapeutic strategy targeting MET as well as EGFR can overcome resistance to gefitinib. In the present study we identified Echinatin (Ecn), a characteristic chalcone in licorice, which inhibited both EGFR and MET and strongly altered NSCLC cell growth. The antitumor efficacy of Ecn against gefitinib-sensitive or -resistant NSCLC cells with EGFR mutations and MET amplification was confirmed by suppressing cell proliferation and anchorage-independent colony growth. During the targeting of EGFR and MET, Ecn significantly blocked the kinase activity, which was validated with competitive ATP binding. Inhibition of EGFR and MET by Ecn decreases the phosphorylation of downstream target proteins ERBB3, AKT and ERK compared with total protein expression or control. Ecn induced the G2/M cell cycle arrest, and apoptosis via the intrinsic pathway of caspase-dependent activation. Ecn induced ROS production and GRP78, CHOP, DR5 and DR4 expression as well as depolarized the mitochondria membrane potential. Therefore, our results suggest that Ecn is a promising therapeutic agent in NSCLC therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Chalconas/farmacologia , Gefitinibe/farmacologia , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Chaperona BiP do Retículo Endoplasmático , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Glycyrrhiza/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Raízes de Plantas/química , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-met/genética , Quinazolinas/farmacologia
10.
Molecules ; 24(22)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717502

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a poor prognostic cancer with a low five-year survival rate. Echinatin (Ech) is a retrochalone from licorice. It has been used as a herbal medicine due to its anti-inflammatory and anti-oxidative effects. However, its anticancer activity or underlying mechanism has not been elucidated yet. Thus, the objective of this study was to investigate the anti-tumor activity of Ech on ESCC by inducing ROS and ER stress dependent apoptosis. Ech inhibited ESCC cell growth in anchorage-dependent and independent analysis. Treatment with Ech induced G2/M phase of cell cycle and apoptosis of ESCC cells. It also regulated their related protein markers including p21, p27, cyclin B1, and cdc2. Ech also led to phosphorylation of JNK and p38. Regarding ROS and ER stress formation associated with apoptosis, we found that Ech increased ROS production, whereas its increase was diminished by NAC treatment. In addition, ER stress proteins were induced by treatment with Ech. Moreover, Ech enhanced MMP dysfunction and caspases activity. Furthermore, it regulated related biomarkers. Taken together, our results suggest that Ech can induce apoptosis in human ESCC cells via ROS/ER stress generation and p38 MAPK/JNK activation.


Assuntos
Apoptose/genética , Chalconas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Phytomedicine ; 63: 153014, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31323446

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) gene alterations are associated with sensitization to tyrosine kinase inhibitors such as gefitinib in lung cancer. Some patients suffering from non-small cell lung cancer (NSCLC) have difficulty in treating the cancer due to resistance acquired to gefitinib with MET amplification. Therefore EGFR and MET may be attractive targets for lung cancer therapy. PURPOSE: This study aimed to investigate the anti-cancer activity of Licochalcone (LC)B extracted from Glycyrrhiza inflata, in gefitinib-sensitive or gefitinib-resistant NSCLC cells, and to define its mechanisms. STUDY DESIGN: We investigated the mechanism of action of LCB by targeting EGFR and MET in human NSCLC cells. METHODS: We used the HCC827 and HCC827GR lines as gefitinib-sensitive and -resistant cells respectively, and determined the effects of LCB on both, by performing cell proliferation assay, flow cytometry analysis and Western blotting. Targets of LCB were identified by pull-down/kinase assay and molecular docking simulation. RESULTS: LCB inhibited both EGFR and MET kinase activity by directly binding to their ATP-binding pockets. The ability of this interaction was verified by computational docking and molecular dynamics simulations. LCB suppressed viability and colony formation of both HCC827 and HCC827GR cells while exhibiting no cytotoxicity to normal cells. The induction of G2/M cell-cycle arrest and apoptosis by LCB was confirmed by Annexin V/7-AAD double staining, ER stress and reactive oxygen species induction, mitochondrial membrane potential loss and caspase activation as well as related-proteins regulation. Inhibition of EGFR and MET by LCB decreased ERBB3 and AKT axis activation. CONCLUSION: We provide insights into the LCB-mediated mechanisms involved in reducing cell proliferation and inducing apoptosis in NSCLC cells. This occurs through dual inhibition of EGFR and MET in NSCLC cells regardless of their sensitivity or resistance to gefitinib. LCB may be a promising novel therapeutic medicine for gefitinib-sensitive or resistant NSCLC treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Chalconas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/metabolismo , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/química , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Glycyrrhiza/química , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Espécies Reativas de Oxigênio/metabolismo
12.
Arch Pharm Res ; 42(6): 481-491, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31030376

RESUMO

Rho-associated coiled-coil-containing protein kinase (ROCK)/Lin11, Isl-1 and Mec-3 kinase (LIMK)/cofilin-signaling cascades are stimulated by receptor tyrosine kinases, G protein-coupled receptors, integrins and its ligands, growth factors, hormones, fibronectin, collagen, and laminin. Activated signaling cascades can cause transit from normal cells to cancer cells by modulating actin/filament dynamics. In various cancers including breast, prostate, and colorectal cancers, high expression or activity of each cascade protein is significantly associated with poor survival rate of patients as well as aggressive metastasis. Silencing ROCK, LIMK, or cofilin can abrogate their activities and inhibit cancer cell growth, invasion, and metastasis. Therefore ROCK/LIMK/cofilin signaling proteins might be good candidates to develop cancer prevention strategies or therapeutics. Currently, netarsudil, a ROCK inhibitor, is only used in clinical patients for glaucoma or ocular hypertension, but not for cancer. In this review, we will discuss comprehensive ROCK/LIMK/cofilin signaling pathway in cancers and its inhibitors for developing cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Despolimerização de Actina/antagonistas & inibidores , Fatores de Despolimerização de Actina/metabolismo , Animais , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Quinases Lim/antagonistas & inibidores , Quinases Lim/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
13.
Molecules ; 24(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769817

RESUMO

Citrus junos Seib ex TANAKA possesses various biological effects. It has been used in oriental remedies for blood circulation and the common cold. Recently, biological effects of C. junos peel have been reported. However, optimization of the biological properties of C. junos peel preparations has yet to be reported on. We developed a high-performance liquid chromatography (HPLC) method for quantification of the active constituents in C. junos peel. Hot water and ethanolic extracts of C. junos peel were prepared and their chemical profiles and biological activities were evaluated. The 80% ethanolic extract demonstrated the greatest antioxidant activity and phenolic content, while the 100% ethanolic extract had the greatest xanthine oxidase inhibitory activity. Elastase inhibition activity was superior in aqueous and 20% ethanolic extracts. The contents of two flavonoids were highest in the 100% ethanolic extract. We postulated that the antioxidant and anti-aging effects of C. junos peel extract could be attributed to phenolics such as flavonoids. Our results suggest that the flavonoid-rich extract of C. junos may be utilized for the treatment and prevention of metabolic disease and hyperuricemia while the water-soluble extract of C. junos could be used as a source for its anti-aging properties.


Assuntos
Antioxidantes/química , Citrus/química , Flavonoides/química , Fenóis/química , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Etanol/química , Flavonoides/farmacologia , Frutas/química , Humanos , Oxirredução/efeitos dos fármacos , Fenóis/farmacologia , Extratos Vegetais/química
14.
Phytother Res ; 31(12): 1858-1867, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29027311

RESUMO

Licochalcone B (Lico B), which is normally isolated from the roots of Glycyrrhiza inflata (Chinese Licorice), generally classified into organic compounds including retrochalcones. Potential pharmacological properties of Lico B include anti-inflammatory, anti-bacterial, anti-oxidant, and anti-cancer activities. However, its biological effects on melanoma and squamous cell carcinoma (SCC) are unknown. Based on these known facts, this study investigated the role of Lico B in apoptosis, through the extrinsic and intrinsic pathways and additional regulation of specificity protein 1 in human skin cancer cell lines. Annexin V/7-aminoactinomycin D staining, western blot analysis, mitochondrial membrane potential assay, and an anchorage-independent cell transformation assay demonstrated that Lico B treatment of human melanoma and SCC cells significantly inhibited cell proliferation and induced apoptotic cell death. More specifically, Lico B induced apoptosis through the regulation of specificity protein 1 and apoptosis-related proteins including CCAAT/enhancer-binding protein homologous protein, death receptors, and poly (ADP-ribose) polymerase. These results indicate that Lico B has apoptotic effect on A375 and A431 skin cancer cells, suggesting the potential value of Lico B for the treatment of human melanoma and SCC. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Carcinoma de Células Escamosas/tratamento farmacológico , Chalconas/química , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
15.
Int J Mol Med ; 39(2): 380-386, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28000844

RESUMO

Esculetin, a coumarin derivative isolated from a variety of medicinal herbs, has been reported to possess multiple therapeutic and pharmacological actions. Although several studies have demonstrated the antioxidant activity of esculetin, its mechanisms of action have not been clearly established. The aim of this study was to evaluate the effects of esculetin against hydrogen peroxide (H2O2)­induced oxidative stress in C2C12 myoblasts and to investigate the mechanisms involved in this process. Our data indicated that esculetin preconditioning significantly attenuated H2O2­induced growth inhibition and DNA damage and the apoptosis of C2C12 cells by suppressing intracellular reactive oxygen species (ROS) accumulation. Treatment with esculetin effectively increased the phosphorylation of nuclear factor erythroid 2­related factor 2 (Nrf2) and the expression of NAD(P)H:quinone oxidoreductase 1 (NQO1). Esculetin treatment also activated extracellular signal­regulated kinase (ERK), and pre­treatment with PD98059, an ERK­specific inhibitor, blocked esculetin-mediated phosphorylation of Nrf2 and the induction of NQO1 expression. In addition, the protective effects of esculetin against H2O2­induced ROS accumulation, apoptosis and growth inhibition were abrogated in the C2C12 cells pre­treated with PD98059. Thus, the present study demonstrates that esculetin protects C2C12 cells against oxidative stress-induced injury, possibly through the activation of the Nrf2/NQO1 pathway.


Assuntos
Antioxidantes/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Umbeliferonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Camundongos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
16.
Asian-Australas J Anim Sci ; 27(11): 1652-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25358327

RESUMO

The present study investigated the optimum blending condition of protected fat, choline and yeast culture for lowering of rumen temperature. The Box Benken experimental design, a fractional factorial arrangement, and response surface methodology were employed. The optimum blending condition was determined using the rumen simulated in vitro fermentation. An additive formulated on the optimum condition contained 50% of protected fat, 25% of yeast culture, 5% of choline, 7% of organic zinc, 6.5% of cinnamon, and 6.5% of stevioside. The feed additive was supplemented at a rate of 0.1% of diet (orchard grass:concentrate, 3:7) and compared with a control which had no additive. The treatment resulted in lower volatile fatty acid (VFA) concentration and biogas than the control. To investigate the effect of the optimized additive and feed energy levels on rumen and rectal temperatures, four rumen cannulated Hanwoo (Korean native beef breed) steers were in a 4×4 Latin square design. Energy levels were varied to low and high by altering the ratio of forage to concentrate in diet: low energy (6:4) and high energy (4:6). The additive was added at a rate of 0.1% of the diet. The following parameters were measured; feed intake, rumen and rectal temperatures, ruminal pH and VFA concentration. This study was conducted in an environmentally controlled house with temperature set at 30°C and relative humidity levels of 70%. Steers were housed individually in raised crates to facilitate collection of urine and feces. The adaptation period was for 14 days, 2 days for sampling and 7 days for resting the animals. The additive significantly reduced both rumen (p<0.01) and rectal temperatures (p<0.001) without depressed feed intake. There were interactions (p<0.01) between energy level and additive on ruminal temperature. Neither additive nor energy level had an effect on total VFA concentration. The additive however, significantly increased (p<0.01) propionate and subsequently had lower acetate:propionate (A/P) ratios than non-additive supplementation. High concentrate diets had significantly lower pH. Interactions between energy and additive were observed (p<0.01) in ammonia nitrogen production. Supplementation of diets with the additive resulted in lower rumen and rectal temperatures, hence the additive showed promise in alleviating undesirable effects of heat stress in cattle.

17.
Phytother Res ; 28(12): 1879-86, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25196544

RESUMO

Kahweol, the coffee-specific deterpene, has been shown to have potential anti-cancer effects against several cancers. However, the molecular mechanisms underlying the anti-cancer activity of kahweol have not yet established. In this study, we investigated whether kahweol could show anti-cancer effects on oral squamous cell lines (OSCCs), HN22 and HSC4. We conducted an 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, 4'-6-diamidino2-phenylindole (DAPI) staining, propidium iodide staining, immunocytochemistry, and Western blot analysis for the characterization of kahweol and the underlying signaling pathway. We determined that kahweol-treated cells showed significantly decreased cell viability and increased nuclear condensation and an increased sub-G1 population in OSCCs. Interestingly, suppression of the transcription factor specificity protein 1 (Sp1) was followed by induced apoptosis by kahweol in a dose-dependent manner. In addition, kahweol modulated the protein expression level of the Sp1 regulatory genes including cell cycle regulatory proteins and anti-apoptotic proteins, resulting in apoptosis. Taken together, results from these findings suggest that kahweol may be a potential anti-cancer drug candidate to induce apoptotic cell death through downregulation of Sp1 in OSCCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/patologia , Diterpenos/farmacologia , Neoplasias Bucais/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Humanos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo
18.
Int J Oncol ; 45(2): 667-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24858379

RESUMO

Licochalcone A (LCA), a chalconoid derived from root of Glycyrrhiza inflata, has been known to possess a wide range of biological functions such as antitumor, anti-angiogenesis, antiparasitic, anti-oxidant, antibacterial and anti-inflammatory effects. However, the anticancer effects of LCA on oral squamous cell carcinoma (OSCC) have not been reported. Our data showed that LCA inhibited OSCC cell (HN22 and HSC4) growth in a concentration- and time-dependent manner. Mechanistically, it was mediated via downregulation of specificity protein 1 (Sp1) expression and subsequent regulation of Sp1 downstream proteins such as p27, p21, cyclin D1, Mcl-1 and survivin. Here, we found that LCA caused apoptotic cell death in HSC4 and HN22 cells, as characterized by sub-G1 population, nuclear condensation, Annexin V staining, and multi-caspase activity and apoptotic regulatory proteins such as Bax, Bid, Bcl(-xl), caspase-3 and PARP. Consequently, this study strongly suggests that LCA induces apoptotic cell death of OSCC cells via downregulation of Sp1 expression, prompting its potential use for the treatment of human OSCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Chalconas/farmacologia , Neoplasias Bucais/patologia , Fitoterapia/métodos , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Glycyrrhiza , Humanos , Neoplasias Bucais/metabolismo , Extratos Vegetais/farmacologia , Raízes de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp1/metabolismo
19.
Int J Oncol ; 43(4): 1103-10, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877711

RESUMO

Honokiol (HK), a novel plant-derived natural product, is a physiologically activated compound with polyphenolic structure, and has been identified to function as an anticancer agent. It has been widely used in several diseases as a traditional medicine for a long time. We investigated whether HK could show anticancer effects on two oral squamous cell lines (OSCCs), HN-22 and HSC-4. We demonstrated that HK-treated cells showed dramatic reduction in cell growth and apoptotic cell morphologies. Intriguingly, the transcription factor specificity protein 1 (Sp1) was significantly inhibited by HK in a dose-dependent manner. Furthermore, we checked changes in cell cycle regulatory proteins and anti-apoptotic proteins at the molecular level, which are known as Sp1 target genes. The important key regulators in the cell cycle such as p27 and p21 were up-regulated by HK-mediated down-regulation of Sp1, whereas anti-apoptotic proteins including Mcl-1 and survivin were decreased, resulting in caspase-dependent apoptosis. Taken together, results from this study suggest that HK could modulate Sp1 transactivation and induce apoptotic cell death through the regulation of cell cycle and suppression of anti­apoptotic proteins. In addition, HK may be used in cancer prevention and therapies to improve the clinical outcome as an anticancer drug.


Assuntos
Compostos de Bifenilo/administração & dosagem , Carcinoma de Células Escamosas/tratamento farmacológico , Lignanas/administração & dosagem , Neoplasias Bucais/tratamento farmacológico , Fator de Transcrição Sp1/biossíntese , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/química , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lignanas/química , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Plantas/química , Fator de Transcrição Sp1/genética
20.
J Biomed Sci ; 19: 60, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22734486

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a very poor prognosis. Several clinical studies such as immunotherapy, gene therapy and molecular targeting agents have been tried for treatment of malignant mesothelioma, however, there is no application for effective clinical treatment. Coffee has various biological functions such as anti-oxidant, anti-inflammatory, anti-mutagenic and anti-carcinogenic activities. The therapeutic activities of the bioactive compounds in coffee was sugested to influence intracellular signaling of MPM. Regarding to the cancer-related functions, In this study, suppression of Sp1 protein level followed by induction of MSTO-211H cell apoptosis by cafestol and kahweol were investigated in oreder to determine Sp1's potential as a significant target for human MPM therapy as well. METHODS: Cells were treated separately with final concentration of cafestol and kahweol and the results were analyzed by MTS assay, DAPI staining, PI staining, luciferase assay, RT-PCR, and immunoblotting. RESULTS: Viability of MSTO-211H and H28 cells were decreased, and apoptotic cell death was increased in MSTO-211H as a result of cafestol and kahweol treatment. Cafestol and kahweol increased Sub-G1 population and nuclear condensation in MSTO-211H cells. Roles of Sp1 in cell proliferation and apoptosis of the MSTO-211H cells by the Sp1 inhibitor of Mithramycin A were previously confirmed. Cafestol and kahweol significantly suppressed Sp1 protein levels. Kahweol slightly attenuated Sp1 mRNA, while Cafestol did not affect in MSTO-211H cells. Cafestol and kahweol modulated the promoter activity and protein expression level of the Sp1 regulatory genes including Cyclin D1, Mcl-1, and Survivin in mesothelioma cells. Apoptosis signaling cascade was activated by cleavages of Bid, Caspase-3, and PARP with cafestol and by upregulation of Bax, and downregulation of Bcl-xl by kahweol. CONCLUSIONS: Sp1 can be a novel molecular target of cafestol and kahweol in human MPM.


Assuntos
Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Café , Diterpenos/administração & dosagem , Neoplasias Pulmonares/metabolismo , Receptores Imunológicos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mesotelioma/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA