Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 313: 116554, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37137453

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Danggui Buxue decoction (DBD) is a classic herbal decoction consisting of Astragali Radix (AR) and Angelica Sinensis Radix (ASR) with a 5:1 wt ratio, which can supplement 'blood' and 'qi' (vital energy) for the treatment of clinical diseases. According to Traditional Chinese Medicine (TCM) theory, dementia is induced by Blood deficiency and Qi weakness, which causes a decline in cognition. However, the underlying mechanisms of DBD improving cognition deficits in neurodegenerative disease are no clear. AIM OF THE STUDY: This study aims at revealing the underlying mechanisms of DBD plays a protective role in the cognitive deficits and pathology process of Alzheimer's disease (AD). MATERIALS AND METHODS: The APP/PS1 (Mo/HuAPP695swe/PS1-dE9) double transgenic mice were adopted as an experimental model of AD. Qualitative and quantitative analysis of 3 compounds in DBT was analyzed by HPLC. Morris water maze test, Golgi staining and electrophysiology assays were used to evaluate the effects of DBD on cognitive function and synaptic plasticity in APP/PS1 mice. Western blot, immunofluorescence and Thioflavin S staining were used for the pathological evaluation of AD. Monitoring the level of ATP, mitochondrial membrane potential, SOD and MDA to evaluate the mitochondrial function, and with the usage of qPCR and CHIP for the changes of histone post-translational modification. RESULTS: In the current study, we found that DBD could effectively attenuate memory impairments and enhance long-term potentiation (LTP) with concurrent increased expression of memory-associated proteins. DBD markedly decreased Aß accumulation in APP/PS1 mice by decreasing the phosphorylation of APP at the Thr668 level but not APP, PS1 or BACE1. Further studies demonstrated that DBD restored mitochondrial biogenesis deficits and mitochondrial dysfunction. Finally, the restored mitochondrial biogenesis and cognitive deficits are under HADC2-mediated histone H4 lysine 12 (H4K12) acetylation at the peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) and N-methyl-D-aspartate receptor type 2B (GluN2B) promoters. CONCLUSIONS: These findings reveal that DBD could ameliorate mitochondrial biogenesis and cognitive deficits by improving H4K12 acetylation. DBD might be a promising complementary drug candidate for AD treatment.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Histonas/metabolismo , Lisina/metabolismo , Lisina/uso terapêutico , Secretases da Proteína Precursora do Amiloide , Acetilação , Biogênese de Organelas , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Camundongos Transgênicos , Cognição , Processamento de Proteína Pós-Traducional , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
2.
J Neurochem ; 124(3): 388-96, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23157378

RESUMO

Hyperhomocysteinemia (Hhcy) may induce memory deficits with ß-amyloid (Aß) accumulation and tau hyperphosphorylation. Simultaneous supplement of folate and vitamin B12 partially restored the plasma homocysteine level and attenuated tau hyperphosphorylation, Aß accumulation and memory impairments induced by Hhcy. However, folate and vitamin B12 treatment have no effects on Hhcy which has the methylenetetrahydrofolate reductase genotype mutation. In this study, we investigated the effects of simultaneous supplement of betaine on Alzheimer-like pathological changes and memory deficits in hyperhomocysteinemic rats after a 2-week induction by vena caudalis injection of homocysteine (Hcy). We found that supplementation of betaine could ameliorate the Hcy-induced memory deficits, enhance long-term potentiation (LTP) and increase dendritic branches numbers and the density of the dendritic spines, with up-regulation of NR1, NR2A, synaptotagmin, synaptophysin, and phosphorylated synapsin I protein levels. Supplementation of betaine also attenuated the Hcy-induced tau hyperphosphorylation at multiple AD-related sites through activation protein phosphatase-2A (PP2A) with decreased inhibitory demethylated PP2A(C) at Leu309 and phosphorylated PP2A(C) at Tyr307. In addition, supplementation of betaine also decreased Aß production with decreased presenilin-1 protein levels. Our data suggest that betaine could be a promising candidate for arresting Hcy-induced AD-like pathological changes and memory deficits.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Betaína/toxicidade , Homocisteína/toxicidade , Hiper-Homocisteinemia/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Doença de Alzheimer/sangue , Animais , Modelos Animais de Doenças , Homocisteína/sangue , Hiper-Homocisteinemia/induzido quimicamente , Lipotrópicos/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA