Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theranostics ; 10(9): 4073-4087, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226540

RESUMO

Uncontrollable cell proliferation and irreversible neurological damage make glioma one of the most deadly diseases in clinic. Besides the multiple biological barriers, glioma stem cells (GSCs) that are responsible for the maintenance and recurrence of tumor tissues also hinder the therapeutic efficacy of chemotherapy. Therefore, all-stage precisional glioma targeted therapy regimens that could efficiently deliver drugs to glioma cells and GSCs after overcoming multiple barriers have received increasing scrutiny. Methods: A polymeric micelle-based drug delivery system was developed by modifying a "Y-shaped" well-designed ligand of both GRP78 protein and quorum sensing receptor to achieve all-stage precisional glioma targeting, then we evaluated the targeting ability and barrier penetration ability both in vitro and in vivo. In order to achieve all-stage precisional therapy, we need kill both GSCs and glioma related cells. Parthenolide (PTL) has been investigated for its selective toxicity to glioma stem cells while Paclitaxel (PTX) and Temozolomide (TMZ) are widely used in experimental and clinical therapy of glioma respectively. So the in vivo anti-glioma effect of combination therapy was evaluated by Kaplan-Meier survival analysis and immunohistochemical (IHC) examination of tumor tissues. Results: The "Y-shaped" well-designed peptide, termed DWVAP, exhibited excellent glioma (and GSCs) homing and barrier penetration ability. When modified on micelle surface, DWVAP peptide significantly enhanced accumulation of micelles in brain and glioma. In addition, DWVAP micelles showed no immunogenicity and cytotoxicity, which could guarantee their safety when used in vivo. Treatment of glioma-bearing mice with PTL loaded DWVAP modified PEG-PLA micelles plus PTX loaded DWVAP modified PEG-PLA micelles or PTL loaded DWVAP modified PEG-PLA micelles plus TMZ showed improved anti-tumor efficacy in comparison to PTL and PTX loaded unmodified micelles or PTL loaded unmodified micelles plus TMZ. Conclusion: Combination of all-stage targeting strategy and concomitant use of chemotherapeutics and stem cell inhibitors could achieve precise targeted therapy for glioma.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Glioma/tratamento farmacológico , Paclitaxel/administração & dosagem , Temozolomida/administração & dosagem , Animais , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Micelas , Peptídeos/uso terapêutico , Polietilenoglicóis/uso terapêutico , Ratos Sprague-Dawley , Sesquiterpenos/administração & dosagem
2.
Phytother Res ; 34(1): 104-117, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31515889

RESUMO

The side effects of docetaxel have limited its antitumor performances in the treatment of nonsmall cell lung cancer (NSCLC). To address the problem, baicalein, a bioactive flavone that exhibits antitumor activity, was combined with docetaxel so as to achieve better efficacy and lower toxicity. The combination treatment enhanced the stabilization of microtubules and halted the cell-cycle progression, thus synergistically inhibiting the proliferation and inducing the apoptosis of A549 cells and Lewis lung carcinoma cells. The decreased expression of Cyclin-dependent kinase 6 and Cyclin B1 confirmed its regulation in cell cycle, with ß-catenin being an important upstream effector, as evidenced by the decreased expression in the cytoplasm and nucleus as well as the attenuated aggregation in the nucleus. Furthermore, baicalein plus docetaxel evinced better antitumor efficacy by the suppressed tumor growth, increased apoptosis, and decreased tumor angiogenesis in vivo, with no increased toxicity discovered in both tumor-bearing and non-tumor-bearing mice, and an improvement in therapeutic index. This study has demonstrated that baicalein plus docetaxel is an appropriate combination simultaneously with augmented antitumor efficacy and acceptable safety, which might be a promising strategy for patients with advanced NSCLC.


Assuntos
Antioxidantes/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quimioterapia Combinada/métodos , Flavanonas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , beta Catenina/metabolismo , Animais , Antioxidantes/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Flavanonas/farmacologia , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA