Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Prod ; 84(2): 395-407, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33570395

RESUMO

Cyclotides are plant-derived peptides that have attracted interest as biocides and scaffolds for the development of stable peptide therapeutics. Cyclotides are characterized by their cyclic backbone and cystine knot framework, which engenders them with remarkably high stability. This study reports the cystine knot-related peptidome of Rinorea bengalensis, a small rainforest tree in the Violaceae family that is distributed from Australia westward to India. Surprisingly, many more acyclic knotted peptides (acyclotides) were discovered than cyclic counterparts (cyclotides), with 32 acyclotides and 1 cyclotide sequenced using combined transcriptome and proteomic analyses. Nine acyclotides were isolated and screened against a panel of mammalian cell lines, showing they had the cytotoxic properties normally associated with cyclotide-like peptides. NMR analysis of the acyclotide ribes 21 and 22 and the cyclotide ribe 33 confirmed that these peptides contained the cystine knot structural motif. The bracelet-subfamily cyclotide ribe 33 was amenable to chemical synthesis in reasonable yield, an achievement that has long eluded previous attempts to synthetically produce bracelet cyclotides. Accordingly, ribe 33 represents an exciting new bracelet cyclotide scaffold that can be subject to chemical modification for future molecular engineering applications.


Assuntos
Ciclotídeos/síntese química , Cistina/química , Violaceae/química , Linhagem Celular Tumoral , Ciclotídeos/química , Eritrócitos/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Proteínas de Plantas/química , Proteômica , Queensland , Transcriptoma
2.
J Nat Prod ; 83(6): 1817-1828, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32437150

RESUMO

Viola is the largest genus in the Violaceae plant family and is known for its ubiquitous natural production of cyclotides. Many Viola species are used as medicinal herbs across Asia and are often consumed by humans in teas for the treatment of diseases, including ulcers and asthma. Previous studies reported the isolation of cyclotides from Viola species in many countries in the hope of discovering novel compounds with anti-cancer activities; however, Viola species from Vietnam have not been investigated to date. Here, the discovery of cyclotides from three Viola species (V. arcuata, V. tonkinensis, and V. austrosinensis) collected in the northern mountainous region of Vietnam is reported. Ten cyclotides were isolated from these three Viola species: four are novel and six were previously reported to be expressed in other plants. The structures of three of the new bracelet cyclotides are similar to that of cycloviolacin O2. Because cycloviolacin O2 has previously been shown to have potent activity against a wide range of cancer cell lines including HeLa (human cervical cancer cells) and PC-3 (human prostate cancer cells), the cancer cytotoxicity of the cyclotides isolated from V. arcuata was assessed. All tested cyclotides were cytotoxic against cancer cells, albeit to varying degrees. The sequences discovered in this study significantly expand the understanding of cyclotide diversity, especially in comparison with other cyclotides found in plants from the Asian region.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Ciclotídeos/química , Ciclotídeos/farmacologia , Viola/química , Sequência de Aminoácidos , Biodiversidade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Masculino , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vietnã
3.
J Biol Chem ; 295(32): 10911-10925, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32414842

RESUMO

Cyclotides are plant-derived peptides characterized by an ∼30-amino acid-long cyclic backbone and a cystine knot motif. Cyclotides have diverse bioactivities, and their cytotoxicity has attracted significant attention for its potential anticancer applications. Hybanthus enneaspermus (Linn) F. Muell is a medicinal herb widely used in India as a libido enhancer, and a previous study has reported that it may contain cyclotides. In the current study, we isolated 11 novel cyclotides and 1 known cyclotide (cycloviolacin O2) from H. enneaspermus and used tandem MS to determine their amino acid sequences. We found that among these cyclotides, hyen C comprises a unique sequence in loops 1, 2, 3, 4, and 6 compared with known cyclotides. The most abundant cyclotide in this plant, hyen D, had anticancer activity comparable to that of cycloviolacin O2, one of the most cytotoxic known cyclotides. We also provide mechanistic insights into how these novel cyclotides interact with and permeabilize cell membranes. Results from surface plasmon resonance experiments revealed that hyen D, E, L, and M and cycloviolacin O2 preferentially interact with model lipid membranes that contain phospholipids with phosphatidyl-ethanolamine headgroups. The results of a lactate dehydrogenase assay indicated that exposure to these cyclotides compromises cell membrane integrity. Using live-cell imaging, we show that hyen D induces rapid membrane blebbing and cell necrosis. Cyclotide-membrane interactions correlated with the observed cytotoxicity, suggesting that membrane permeabilization and disintegration underpin cyclotide cytotoxicity. These findings broaden our knowledge on the indigenous Indian herb H. enneaspermus and have uncovered cyclotides with potential anticancer activity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ciclotídeos/farmacologia , Descoberta de Drogas , Plantas Medicinais/química , Violaceae/química , Sequência de Aminoácidos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Ressonância de Plasmônio de Superfície , Espectrometria de Massas em Tandem
4.
ACS Infect Dis ; 4(12): 1727-1736, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30346140

RESUMO

Computer-aided screening of antimicrobial peptides (AMPs) is a promising approach for discovering novel therapies against multidrug-resistant bacterial infections. Here, we functionally and structurally characterized an Escherichia coli-derived AMP (EcDBS1R5) previously designed through pattern identification [α-helical set (KK[ILV](3)[AILV])], followed by sequence optimization. EcDBS1R5 inhibited the growth of Gram-negative and Gram-positive, susceptible and resistant bacterial strains at low doses (2-32 µM), with no cytotoxicity observed against non-cancerous and cancerous cell lines in the concentration range analyzed (<100 µM). Furthermore, EcDBS1R5 (16 µM) acted on Pseudomonas aeruginosa pre-formed biofilms by compromising the viability of biofilm-constituting cells. The in vivo antibacterial potential of EcDBS1R5 was confirmed as the peptide reduced bacterial counts by two-logs 2 days post-infection using a skin scarification mouse model. Structurally, circular dichroism analysis revealed that EcDBS1R5 is unstructured in hydrophilic environments, but has strong helicity in 2,2,2-trifluoroethanol (TFE)/water mixtures (v/v) and sodium dodecyl sulfate (SDS) micelles. The TFE-induced nuclear magnetic resonance structure of EcDBS1R5 was determined and showed an amphipathic helical segment with flexible termini. Moreover, we observed that the amide protons for residues Met2-Ala8, Arg10, Ala13-Ala16, and Trp19 in EcDBS1R5 are protected from the solvent, as their temperature coefficients values are more positive than -4.6 ppb·K-1. In summary, this study reports a novel dual-antibacterial/antibiofilm α-helical peptide with therapeutic potential in vitro and in vivo against clinically relevant bacterial strains.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/química , Biofilmes/efeitos dos fármacos , Escherichia coli/química , Infecções por Pseudomonas/tratamento farmacológico , Animais , Dicroísmo Circular , Desenho Assistido por Computador , Desenho de Fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia
5.
J Nat Prod ; 72(8): 1453-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19711988

RESUMO

The plant Momordica cochinchinensis has traditionally been used in Chinese medicine to treat a variety of illnesses. A range of bioactive molecules have been isolated from this plant, including peptides, which are the focus of this study. Here we report the isolation and characterization of two novel peptides, MCoCC-1 and MCoCC-2, containing 33 and 32 amino acids, respectively, which are toxic against three cancer cell lines. The two peptides are highly homologous to one another, but show no sequence similarity to known peptides. Elucidation of the three-dimensional structure of MCoCC-1 suggests the presence of a cystine knot motif, also found in a family of trypsin inhibitor peptides from this plant. However, unlike its structural counterparts, MCoCC-1 does not inhibit trypsin. MCoCC-1 has a well-defined structure, characterized mainly by a triple-stranded antiparallel beta-sheet, but unlike the majority of cystine knot proteins MCoCC-1 contains a disordered loop presumably as a result of flexibility in a localized region of the molecule. Of the cell lines tested, MCoCC-1 is the most toxic against a human melanoma cell line (MM96L) and is nonhemolytic to human erythrocytes. The role of these peptides within the plant remains to be determined.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Momordica/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos/química , Peptídeos/isolamento & purificação , Plantas Medicinais/química , Sequência de Aminoácidos , Antineoplásicos Fitogênicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Ressonância Magnética Nuclear Biomolecular , Peptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Sementes/química , Homologia de Sequência de Aminoácidos , Inibidores da Tripsina/química , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA