Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614118

RESUMO

Stroke is a major cause of death and disability across the world, and its detrimental impact should not be underestimated. Therapies are available and effective for ischemic stroke (e.g., thrombolytic recanalization and mechanical thrombectomy); however, there are limitations to therapeutic interventions. Recanalization therapy has developed dramatically, while the use of adjunct neuroprotective agents as complementary therapies remains deficient. Pathological TAR DNA-binding protein (TDP-43) has been identified as a major component of insoluble aggregates in numerous neurodegenerative pathologies, including ALS, FTLD and Alzheimer's disease. Here, we show that increased pathological TDP-43 fractions accompanied by impaired mitochondrial function and increased gliosis were observed in an ischemic stroke rat model, suggesting a pathological role of TDP-43 in ischemic stroke. In ischemic rats administered rapamycin, the insoluble TDP-43 fraction was significantly decreased in the ischemic cortex region, accompanied by a recovery of mitochondrial function, the attenuation of cellular apoptosis, a reduction in infarct areas and improvements in motor defects. Accordingly, our results suggest that rapamycin provides neuroprotective benefits not only by ameliorating pathological TDP-43 levels, but also by reversing mitochondrial function and attenuating cell apoptosis in ischemic stroke.


Assuntos
Esclerose Lateral Amiotrófica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Ratos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Apoptose , Esclerose Lateral Amiotrófica/patologia
2.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326191

RESUMO

BACKGROUND: Stroke is one of the leading causes of death and disability worldwide and places a heavy burden on the economy in our society. Current treatments, such as the use of thrombolytic agents, are often limited by a narrow therapeutic time window. However, the regeneration of the brain after damage is still active days, even weeks, after stroke occurs, which might provide a second window for treatment. Emodin, a traditional Chinese medicinal herb widely used to treat acute hepatitis, has been reported to possess antioxidative capabilities and protective effects against myocardial ischemia/reperfusion injury. However, the underlying mechanisms and neuroprotective functions of Emodin in a rat middle cerebral artery occlusion (MCAO) model of ischemic stroke remain unknown. This study investigates neuroprotective effects of Emodin in ischemia both in vitro and in vivo. METHODS: PC12 cells were exposed to oxygen-glucose deprivation to simulate hypoxic injury, and the involved signaling pathways and results of Emodin treatment were evaluated. The therapeutic effects of Emodin in ischemia animals were further investigated. RESULTS: Emodin reduced infarct volume and cell death following focal cerebral ischemia injury. Emodin treatment restored PC12 cell viability and reduced reactive oxygen species (ROS) production and glutamate release under conditions of ischemia/hypoxia. Emodin increased Bcl-2 and glutamate transporter-1 (GLT-l) expression but suppressed activated-caspase 3 levels through activating the extracellular signal-regulated kinase (ERK)-1/2 signaling pathway. CONCLUSION: Emodin induced Bcl-2 and GLT-1 expression to inhibit neuronal apoptosis and ROS generation while reducing glutamate toxicity via the ERK-1/2 signaling pathway. Furthermore, Emodin alleviated nerve cell injury following ischemia/reperfusion in a rat MCAO model. Emodin has neuroprotective effects against ischemia/reperfusion injury both in vitro and in vivo, which may be through activating the ERK-1/2 signaling pathway.


Assuntos
Emodina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Animais , Biomarcadores , Sobrevivência Celular , Suscetibilidade a Doenças , Hipóxia/metabolismo , Imuno-Histoquímica , Células PC12 , Ratos , Traumatismo por Reperfusão/tratamento farmacológico
3.
J Biomed Sci ; 23(1): 72, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769241

RESUMO

BACKGROUND: In the central nervous system regions of the sporadic and familial FTLD and ALS patients, TDP-43 has been identified as the major component of UBIs inclusions which is abnormally hyperphosphorylated, ubiquitinated, and cleaved into C-terminal fragments to form detergent-insoluble aggregates. So far, the effective drugs for FTLD and ALS neurodegenerative diseases are yet to be developed. Autophagy has been demonstrated as the major metabolism route of the pathological TDP-43 inclusions, hence activation of autophagy is a potential therapeutic strategy for TDP-43 pathogenesis in FTLD and ALS. Berberine, a traditional herbal medicine, is an inhibitor of mTOR signal and an activator for autophagy. Berberine has been implicated in several kinds of diseases, including the neuronal-related pathogenesis, such as Parkinson's, Huntington's and Alzheimer's diseases. However, the therapeutic effect of berberine on FTLD or ALS pathology has never been investigated. RESULTS: Here we studied the molecular mechanism of berberine in cell culture model with TDP-43 proteinopathies, and found that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. And inhibition of autophagy by specific autophagosome inhibitor, 3-MA, reverses the effect of berberine on reducing the accumulation of insoluble TDP-43 and aggregates formation. These results gave us the notion that inhibition of autophagy by 3-MA reverses the effect of berberine on TDP-43 pathogenesis, and activation of mTOR-regulated autophagy plays an important role in berberine-mediated therapeutic effect on TDP-43 proteinopathies. CONCLUSION: We supported an important notion that the traditional herb berberine is a potential alternative therapy for TDP-43-related neuropathology. Here we demonstrated that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. mTOR-autophagy signals plays an important role in berberine-mediated autophagic clearance of TDP-43 aggregates. Exploring the detailed mechanism of berberine on TDP-43 proteinopathy provides a better understanding for the therapeutic development in FTLD and ALS.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Berberina/uso terapêutico , Degeneração Lobar Frontotemporal/terapia , Proteinopatias TDP-43/terapia , Esclerose Lateral Amiotrófica/genética , Animais , Linhagem Celular Tumoral , Degeneração Lobar Frontotemporal/genética , Camundongos , Proteinopatias TDP-43/genética
4.
Molecules ; 19(6): 7341-55, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24905604

RESUMO

Glutamate sensors based on the immobilization of glutamate oxidase (GlutOx) were prepared by adsorption on electrodeposited chitosan (Method 1) and by crosslinking with glutaraldehyde (Method 2) on micromachined platinum microelectrodes. It was observed that glutamate sensors prepared by Method 1 have faster response time (<2 s) and lower detection limit (2.5±1.1 µM) compared to that prepared by Method 2 (response time: <5 sec and detection limit: 6.5±1.7 µM); glutamate sensors prepared by Method 2 have a larger linear detection range (20-352 µM) and higher sensitivity (86.8±8.8 nA·µM-1·cm-2, N=12) compared to those prepared by Method 1 (linear detection range: 20-217 µM and sensitivity: 34.9±4.8 nA·µM-1·cm-2, N=8). The applicability of the glutamate sensors in vivo was also demonstrated. The glutamate sensors were implanted into the rat brain to monitor the stress-induced extracellular glutamate release in the hypothalamus of the awake, freely moving rat.


Assuntos
Enzimas Imobilizadas/metabolismo , Aminoácido Oxirredutases/metabolismo , Animais , Quitosana/química , Ácido Glutâmico/metabolismo , Glutaral/química , Hipotálamo/metabolismo , Masculino , Microeletrodos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA