Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(8)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38417178

RESUMO

Objective.Alternating electric fields (AEF) therapy is a treatment modality for patients with glioblastoma. Tumor characteristics such as size, location, and extent of peritumoral edema may affect the AEF strength and distribution. We evaluated the sensitivity of the AEFs in a realistic 3D rat glioma model with respect to these properties.Approach.The electric properties of the peritumoral edema were varied based on calculated and literature-reported values. Models with different tumor composition, size, and location were created. The resulting AEFs were evaluated in 3D rat glioma models.Main results.In all cases, a pair of 5 mm diameter electrodes induced an average field strength >1 V cm-1. The simulation results showed that a negative relationship between edema conductivity and field strength was found. As the tumor core size was increased, the average field strength increased while the fraction of the shell achieving >1.5 V cm-1decreased. Increasing peritumoral edema thickness decreased the shell's mean field strength. Compared to rostrally/caudally, shifting the tumor location laterally/medially and ventrally (with respect to the electrodes) caused higher deviation in field strength.Significance.This study identifies tumor properties that are key drivers influencing AEF strength and distribution. The findings might be potential preclinical implications.


Assuntos
Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Glioma , Linfocinas , Humanos , Ratos , Animais , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Terapia por Estimulação Elétrica/métodos , Glioma/terapia , Glioblastoma/patologia
2.
Phys Med Biol ; 68(20)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37703902

RESUMO

Objective.Application of alternating electrical fields (AEFs) in the kHz range is an established treatment modality for primary and recurrent glioblastoma. Preclinical studies would enable innovations in treatment monitoring and efficacy, which could then be translated to benefit patients. We present a practical translational process converting image-based data into 3D rat head models for AEF simulations and study its sensitivity to parameter choices.Approach.Five rat head models composed of up to 7 different tissue types were created, and relative permittivity and conductivity of individual tissues obtained from the literature were assigned. Finite element analysis was used to model the AEF strength and distribution in the models with different combinations of head tissues, a virtual tumor, and an electrode pair.Main results.The simulations allowed for a sensitivity analysis of the AEF distribution with respect to different tissue combinations and tissue parameter values.Significance.For a single pair of 5 mm diameter electrodes, an average AEF strength inside the tumor exceeded 1.5 V cm-1, expected to be sufficient for a relevant therapeutic outcome. This study illustrates a robust and flexible approach for simulating AEF in different tissue types, suitable for preclinical studies in rodents and translatable to clinical use.


Assuntos
Terapia por Estimulação Elétrica , Glioblastoma , Humanos , Ratos , Animais , Glioblastoma/patologia , Eletricidade , Condutividade Elétrica , Terapia por Estimulação Elétrica/métodos
3.
Bioelectrochemistry ; 149: 108287, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36306728

RESUMO

Exposing cancer cells to alternating electric fields of 100-300 kHz frequency and 1-4 V/cm strength has been shown to significantly reduce cancer growth in cell culture and in human patients. This form of anti-cancer therapy is more commonly referred to as tumor treating fields (TTFields), a novel treatment modality that has been approved by the U.S. Food and Drug Administration for use in patients with glioblastoma and malignant pleural mesothelioma. Pivotal trials in other solid organ cancer trials are underway. In regards to overall survival, TTFields alone is comparable to chemotherapy alone in recurrent glioblastoma. However, when combined with adjuvant chemotherapy, TTFields prolong median survival by 4.9 months in newly-diagnosed glioblastoma. TTFields hold promise as a therapeutic approach to numerous solid organ cancers. This review summarizes the current status of TTFields research at the preclinical level, highlighting recent aspects of a relatively complex working hypothesis. In addition, we point out the gaps between limited preclinical in vivo studies and the available clinical data. To date, no customized system for TTFields delivery in rodent models of glioblastoma has been presented. We aim to motivate the expansion of TTFields preclinical research and facilitate the availability of suitable hardware, to ultimately improve outcomes in patients with cancer.


Assuntos
Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Humanos , Glioblastoma/terapia , Terapia Combinada , Eletricidade
4.
BMC Complement Med Ther ; 22(1): 58, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255889

RESUMO

BACKGROUND: Gastric signet ring cell carcinoma (SRCC) is an aggressive gastric adenocarcinoma with a poor prognosis when diagnosed at an advanced stage. As alternative medicine, two natural supplements (ascorbate (AA) and sodium alpha lipoate (LA)) have been shown to inhibit various cancers with mild side effects. METHODS: These two natural supplements and a series of combinations (AA&LA, AA+LA and LA + AA) were incubated with non-SRCC cells (GPM-1), patient-derived gastric origin SRCC (GPM-2), gastric-origin SRCCs (HSC-39 and KATO-3), human pancreatic (MIA PaCa-2) and ovarian (SKOV-3) cells for evaluating their therapeutic effects. Moreover, these treatments were applied in 3D-cultured organoids to reveal the feasibility of these approaches for in vivo study. RESULTS: Analyzing their antioxidant capabilities and dose-response curves, we observed that all four gastric cell lines, including three patient-derived cell lines were sensitive to ascorbate (~ 10 mM). The influence of ascorbate incubation time was studied, with a 16-h incubation found to be optimal for in vitro studies. Moreover, a simultaneous combination of AA and LA (AA&LA) did not significantly inhibit cell proliferation, while prior LA treatment increased the growth inhibition of AA therapy (LA + AA). Anti-cancer efficacy of AA was further confirmed in 3D-cultured SRCC (KATO-3) organoids. CONCLUSIONS: This study highlights the potential of AA and LA + AA in treating gastric origin SRCC, and demonstrates the influence of order in which the drugs are administered.


Assuntos
Adenocarcinoma , Carcinoma de Células em Anel de Sinete , Terapias Complementares , Neoplasias Gástricas , Carcinoma de Células em Anel de Sinete/tratamento farmacológico , Carcinoma de Células em Anel de Sinete/patologia , Humanos , Sódio , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
5.
J Neurooncol ; 134(2): 259-268, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28681243

RESUMO

Glioblastoma (GBM) is the most aggressive and lethal form of brain cancer. Standard therapies are non-specific and often of limited effectiveness; thus, efforts are underway to uncover novel, unorthodox therapies against GBM. In previous studies, we investigated Withaferin A, a steroidal lactone from Ayurvedic medicine that inhibits proliferation in cancers including GBM. Another novel approach, tumor treating fields (TTFields), is thought to disrupt mitotic spindle formation and stymie proliferation of actively dividing cells. We hypothesized that combining TTFields with Withaferin A would synergistically inhibit proliferation in glioblastoma. Human glioblastoma cells (GBM2, GBM39, U87-MG) and human breast adenocarcinoma cells (MDA-MB-231) were isolated from primary tumors. The glioma cell lines were genetically engineered to express firefly luciferase. Proliferative potential was assessed either by bioluminescence imaging or cell counting via hemocytometer. TTFields (4 V/cm) significantly inhibited growth of the four cancer cell lines tested (n = 3 experiments per time point, four measurements per sample, p < 0.02 at least; 2-way ANOVA, control vs. treatment). The combination of Withaferin A (10-100 nM) with TTFields significantly inhibited the growth of the glioma cells to a degree beyond that of Withaferin A or TTFields alone. The interaction of the Withaferin A and TTFields on glioma cells was found to be synergistic in nature (p < 0.01, n = 3 experiments). These findings were validated by both bioluminescence and hemocytometric measurements. The combination of Withaferin A with TTFields represents a novel approach to treat GBM in a manner that is likely better than either treatment alone and that is synergistic.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/terapia , Proliferação de Células , Terapia por Estimulação Elétrica , Glioma/terapia , Vitanolídeos/uso terapêutico , Adenocarcinoma/patologia , Adenocarcinoma/fisiopatologia , Adenocarcinoma/terapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Terapia Combinada , Doxorrubicina/uso terapêutico , Terapia por Estimulação Elétrica/métodos , Glioma/patologia , Glioma/fisiopatologia , Humanos , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Temperatura
6.
J Neurooncol ; 126(2): 253-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26650066

RESUMO

Glioblastoma multiforme (GBM) is an aggressive, malignant cancer Johnson and O'Neill (J Neurooncol 107: 359-364, 2012). An extract from the winter cherry plant (Withania somnifera ), AshwaMAX, is concentrated (4.3 %) for Withaferin A; a steroidal lactone that inhibits cancer cells Vanden Berghe et al. (Cancer Epidemiol Biomark Prev 23: 1985-1996, 2014). We hypothesized that AshwaMAX could treat GBM and that bioluminescence imaging (BLI) could track oral therapy in orthotopic murine models of glioblastoma. Human parietal-cortical glioblastoma cells (GBM2, GBM39) were isolated from primary tumors while U87-MG was obtained commercially. GBM2 was transduced with lentiviral vectors that express Green Fluorescent Protein (GFP)/firefly luciferase fusion proteins. Mutational, expression and proliferative status of GBMs were studied. Intracranial xenografts of glioblastomas were grown in the right frontal regions of female, nude mice (n = 3-5 per experiment). Tumor growth was followed through BLI. Neurosphere cultures (U87-MG, GBM2 and GBM39) were inhibited by AshwaMAX at IC50 of 1.4, 0.19 and 0.22 µM equivalent respectively and by Withaferin A with IC50 of 0.31, 0.28 and 0.25 µM respectively. Oral gavage, every other day, of AshwaMAX (40 mg/kg per day) significantly reduced bioluminescence signal (n = 3 mice, p < 0.02, four parameter non-linear regression analysis) in preclinical models. After 30 days of treatment, bioluminescent signal increased suggesting onset of resistance. BLI signal for control, vehicle-treated mice increased and then plateaued. Bioluminescent imaging revealed diffuse growth of GBM2 xenografts. With AshwaMAX, GBM neurospheres collapsed at nanomolar concentrations. Oral treatment studies on murine models confirmed that AshwaMAX is effective against orthotopic GBM. AshwaMAX is thus a promising candidate for future clinical translation in patients with GBM.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Withania/química , Vitanolídeos/administração & dosagem , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Receptores ErbB/metabolismo , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Medições Luminescentes , Camundongos , Camundongos Nus , Células-Tronco Neurais/efeitos dos fármacos , Extratos Vegetais/química , Vitanolídeos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Clin Cancer Res ; 21(2): 335-46, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25381339

RESUMO

PURPOSE: We describe a noninvasive PET imaging method that monitors early therapeutic efficacy of BAY 87-2243, a novel small-molecule inhibitor of mitochondrial complex I as a function of hypoxia-inducible factor-1α (HIF1α) activity. EXPERIMENTAL DESIGN: Four PET tracers [(18)F-FDG, (18)F-Fpp(RGD)2, (18)F-FLT, and (18)F-FAZA] were assessed for uptake into tumor xenografts of drug-responsive (H460, PC3) or drug-resistant (786-0) carcinoma cells. Mice were treated with BAY 87-2243 or vehicle. At each point, RNA from treated and vehicle H460 tumor xenografts (n = 3 each) was isolated and analyzed for target genes. RESULTS: Significant changes in uptake of (18)F-FAZA, (18)F-FLT, and (18)F-Fpp(RGD)2 (P < 0.01) occurred with BAY 87-2243 treatment with (18)F-FAZA being the most prominent. (18)F-FDG uptake was unaffected. (18)F-FAZA tumor uptake declined by 55% to 70% (1.21% ± 0.10%ID/g to 0.35 ± 0.1%ID/g; n = 6, vehicle vs. treatment) in both H460 (P < 0.001) and PC3 (P < 0.05) xenografts 1 to 3 days after drug administration. (18)F-FAZA uptake in 786-0 xenografts was unaffected. Decline occurred before significant differences in tumor volume, thus suggesting (18)F-FAZA decrease reflected early changes in tumor metabolism. BAY 87-2243 reduced expression of hypoxia-regulated genes CA IX, ANGPTL4, and EGLN-3 by 99%, 93%, and 83%, respectively (P < 0.001 for all), which corresponds with reduced (18)F-FAZA uptake upon drug treatment. Heterogeneous expression of genes associated with glucose metabolism, vessel density, and proliferation was observed. CONCLUSIONS: Our studies suggest suitability of (18)F-FAZA-PET as an early pharmacodynamic monitor on the efficacy of anticancer agents that target the mitochondrial complex I and intratumor oxygen levels (e.g., BAY 87-2243).


Assuntos
Antineoplásicos/uso terapêutico , Nitroimidazóis/farmacocinética , Oxidiazóis/uso terapêutico , Pirazóis/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética , Animais , Antineoplásicos/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Didesoxinucleosídeos/farmacocinética , Feminino , Fluordesoxiglucose F18/farmacocinética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Nus , Oxidiazóis/farmacologia , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Pirazóis/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA