Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Complement Med Ther ; 24(1): 28, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195460

RESUMO

BACKGROUND: Indigofera suffruticosa Mill. is used as a folk medicine for treating patients with leukemia, however very little is known regarding the molecular mechanism of its anti-leukemic activity and the chemical profile of the active extract. The present study aimed to reveal the molecular effect of I. suffruticosa aerial parts extract (ISAE) on leukemia cells and its chemical constituents. METHODS: Cytotoxicity of ISAE were determined by resazurin viability assay, multitox - Glo multiplex cytotoxicity assay, and Annexin V staining assay. Cell cycle profiles were revealed by propidium iodide staining assay. The effects of ISAE on G2/M arrest signaling and DNA damage were evaluated by Western blot assay and phospho-H2A.X staining assay. The chemical profile of ISAE were determined by tandem mass spectroscopy and molecular networking approach. RESULTS: We showed that the acute lymphoblastic leukemia cell line Jurkat cell was more responsive to ISAE treatment than other leukemia cell lines. In contrast, ISAE did not induce cytotoxic effects in normal fibroblast cells. Cell cycle analysis revealed that ISAE triggered G2/M arrest in Jurkat cells in dose- and time-dependent manners. Elevation of annexin V-stained cells and caspase 3/7 activity suggested ISAE-induced apoptosis. Furthermore, ISAE alone could increase the phosphorylation of CDK1 at Y15 and activate the ATR/CHK1/Wee1/CDC25C signaling pathway. However, the addition of caffeine, a widely used ATR inhibitor to ISAE, reduced the phosphorylation of ATR, CHK1, and CDK1, as well as G2/M arrest in Jurkat cells. Moreover, increased phospho-H2A.X stained cells indicated the involvement of DNA damage in the anti-leukemic effect of ISAE. Finally, qualitative analysis using UPLC-tandem mass spectroscopy and molecular networking revealed that tryptanthrin was the most abundant organoheterocyclic metabolite in ISAE. At equivalent concentrations to ISAE, tryptanthrin induced G2/M arrest of Jurkat cells, which can be prevented by caffeine. CONCLUSIONS: ISAE causes G2/M arrest via activating ATR/CHK1/CDK1 pathway and tryptanthrin is one of the active components of ISAE. Our findings provide subtle support to the traditional use of I. suffruitcosa in leukemia management in folk medicine.


Assuntos
Indigofera , Leucemia , Humanos , Células Jurkat , Anexina A5 , Apoptose , Cafeína , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Componentes Aéreos da Planta , Extratos Vegetais/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia
2.
Molecules ; 27(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364385

RESUMO

Maerua siamensis (Capparaceae) roots are used for treating pain and inflammation in traditional Thai medicine. Eight new indole alkaloids, named maeruanitriles A and B, maeroximes A-C, and maeruabisindoles A-C, were isolated from them. Spectroscopic methods and computational analysis were applied to determine the structure of the isolated compounds. Maeroximes A-C possesses an unusual O-methyloxime moiety. The bisindole alkaloid maeruabisindoles A and B possess a rare azete ring, whereas maeruabisindole C is the first indolo[3,2-b]carbazole derivative found in this plant family. Five compounds [maeruanitriles A and B, maeroxime C, maeruabisindoles B, and C] displayed anti-inflammatory activity by inhibiting nitric oxide (NO) production in the lipopolysaccharide-induced RAW 264.7 cells. Maeruabisindole B was the most active inhibitor of NO production, with an IC50 of 31.1 ± 1.8 µM compared to indomethacin (IC50 = 150.0 ± 16.0 µM) as the positive control.


Assuntos
Capparaceae , Óxido Nítrico , Camundongos , Animais , Alcaloides Indólicos/química , Raízes de Plantas/química , Células RAW 264.7 , Estrutura Molecular
3.
Phytochemistry ; 202: 113312, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35830940

RESUMO

To explore valuable endophytic fungus from Formosan Lauraceous plants as natural medicinal products, the fungus, Diaporthe caulivora isolated from leaves of Neolitsea daibuensis, was investigated. Through a thorough investigation of the ethanolic extract of the solid fermentation of D. caulivora 09F0132, six undescribed alkyne-geranylcyclohexenetriols, caulivotrioloxins A-F, one undescribed trichopyrone, diapopyrone, two undescribed sesquiterpenes, caulibysins A-B, one compound firstly isolated from the natural source, 3-O-desmethyl phomentrioloxin, and eight known compounds have been successfully identified. The absolute configuration of caulibysin A was confirmed by single-crystal X-ray diffraction, and those of (3R,8S)-5,7-dihydroxy-3-(1-hydroxyethyl)phthalide and (3S,8S)-5,7-dihydroxy-3-(1-hydroxyethyl)phthalide were determined by circular dichroism (CD) spectra. Among the isolated compounds, caulivotrioloxin A concentration-dependently decreased the cellular melanin contents and tyrosinase activities in mouse melanoma B16-F10 cells, suggesting the anti-melanogenic potentials. The anti-melanogenic effects of caulivotrioloxin A involved the decrease in the protein expressions of melanogenic enzymes, including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Taken together, these results suggested that the isolates from D. caulivora could be served as natural melanogenesis inhibitors for cosmeceutical applications.


Assuntos
Melaninas , Melanoma Experimental , Alcinos , Animais , Ascomicetos , Endófitos , Camundongos , Monofenol Mono-Oxigenase , Extratos Vegetais/química
4.
Molecules ; 27(2)2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056749

RESUMO

Five new dimer compounds, namely Taiwaniacryptodimers A-E (1-5), were isolated from the methanol extract of the roots of Taiwania cryptomerioides. Their structures were established by mean of spectroscopic analysis and comparison of NMR data with those of known analogues. Their antifungal activities were also evaluated. Our results indicated that metabolites 1, 2, 4, and 5 displayed moderate antifungal activities against Aspergillus niger, Penicillium italicum, Candida albicans, and Saccharomyces cerevisiae.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Cupressaceae/química , Raízes de Plantas/química , Antifúngicos/isolamento & purificação , Aspergillus niger/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Dimerização , Avaliação Pré-Clínica de Medicamentos , Espectroscopia de Ressonância Magnética , Metanol/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Penicillium/efeitos dos fármacos , Extratos Vegetais/química
5.
Food Funct ; 12(18): 8694-8703, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34355225

RESUMO

The mold Monascus has been used as a natural food coloring agent and food additive for more than 1000 years in Asian countries. In Chinese herbology, it was also used for easing digestion and antiseptic effects. Through a thorough investigation of a citrinin-free strain: M. purpureus BCRC 38110, four azaphilones, three benzenoids, one benzofuranone, one 5',6'-dihydrospiro[isochromane-1,2'-pyran]-4'(3'H)-one derivative, two steroids, and six tetralones have been successfully identified. Among them, monapyridine A (1), monatetralones A-E (2-6), and monabenzofuranone (7) were first reported. Their structures were characterized by 1D and 2D NMR, UV, IR, and HRESIMS analyses. With a series of bioactivity screening, monascuspirolide B (14) and ergosterol peroxide (16) exhibited concentration-dependent attenuation of the paclitaxel-induced neurite damage of mouse dorsal root ganglion neurons. The interleukin (IL)-1ß-induced release of inflammatory cytokines IL-8 and tumor necrosis factor (TNF)-α in human chondrosarcoma cells was inhibited by monapurpureusone (8) and monascuspirolide B (14). Altogether, M. purpureus BCRC 38110 possessed potentials as natural therapeutics against inflammatory osteoarthritis and paclitaxel-induced neurotoxicity.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Monascus/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Animais , Anti-Inflamatórios/química , Linhagem Celular Tumoral , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Humanos , Interleucina-1beta/imunologia , Interleucina-8/metabolismo , Camundongos , Estrutura Molecular , Monascus/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Osteoartrite/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
6.
Antioxidants (Basel) ; 10(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915987

RESUMO

Transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) plays a crucial role in regulating the expression of genes participating in cellular defense mechanisms against oxidative or xenobiotic insults. However, there is increasing evidence showing that hyperactivation of NRF2 is associated with chemoresistance in several cancers, including hepatocellular carcinoma (HCC), thus making NRF2 an attractive target for cancer therapy. Another important issue in cancer medication is the adverse effects of these substances on normal cells. Here, we attempted to identify a dual-selective NRF2 regulator that exerts opposite effects on NRF2-hyperactivated HCC cells and normal keratinocytes. An antioxidant response element driven luciferase reporter assay was established in Huh7 and HaCaT cells as high-throughput screening platforms. Screening of 3,000 crude extracts from the Taiwanese Indigenous Plant Extract Library resulted in the identification of Beilschmiedia tsangii (BT) root extract as a dual-selective NRF2 regulator. Multiple compounds were found to contribute to the dual-selective effects of BT extract on NRF2 signaling in two cell lines. BT extract reduced NRF2 protein level and target gene expression levels in Huh7 cells but increased them in HaCaT cells. Furthermore, notable combinatory cytotoxic effects of BT extract and sorafenib on Huh7 cells were observed. On the contrary, sorafenib-induced inflammatory reactions in HaCaT cells were reduced by BT extract. In conclusion, our results suggest that the combination of a selective NRF2 activator and inhibitor could be a practical strategy for fine-tuning NRF2 activity for better cancer treatment and that plant extracts or partially purified fractions could be a promising source for the discovery of dual-selective NRF2 regulators.

7.
Molecules ; 25(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172041

RESUMO

Neolitsea acuminatissima (Lauraceae) is an endemic plant in Taiwan. One new carboline alkaloid, demethoxydaibucarboline A (1), two new eudesmanolide-type sesquiterpenes, methyl-neolitacumone A (2), neolitacumone E (3), and twelve known compounds (4-15) were isolated from the root of Neolitsea acuminatissima. Their structures were elucidated by spectroscopic analysis. Glucuronidation represents a major metabolism process of detoxification for carcinogens in the liver. However, intestinal bacterial ß-Glucuronidase (ßG) has been considered pivotal to colorectal carcinogenesis. To develop specific bacterial-ßG inhibitors with no effect on human ßG, methanolic extract of roots of N. acuminatissima was selected to evaluate their anti-ßG activity. Among the isolates, demethoxydaibucarboline A (1) and quercetin (8) showed a strong bacterial ßG inhibitory effect with an inhibition ratio of about 80%. Methylneolitacumone A (2) and epicatechin (10) exhibited a moderate or weak inhibitory effect and the enzyme activity was less than 45% and 74%, respectively. These four compounds specifically inhibit bacterial ßG but not human ßG. Thus, they are expected to be used for the purpose of reducing chemotherapy-induced diarrhea (CID). The results suggest that the constituents of N. acuminatissima have the potential to be used as CID relief candidates. However, further investigation is required to determine their mechanisms of action.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glucuronidase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Glucuronidase/metabolismo , Humanos , Lauraceae/química , Estrutura Molecular , Extratos Vegetais/química , Raízes de Plantas/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia
8.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927887

RESUMO

In a series of anti-inflammatory screenings of lauraceous plants, the methanolic extract of the leaves of Machilus japonica var. kusanoi (Hayata) J.C. Liao showed potent inhibition on both superoxide anion generation and elastase release in human neutrophils. Bioassay-guided fractionation of the leaves of M. japonica var. kusanoi led to the isolation of twenty compounds, including six new butanolides, machinolides A-F (1-6), and fourteen known compounds (7-20). Their structures were characterized by 1D and 2D NMR, UV, IR, CD, and MS data. The absolute configuration of the new compounds were unambiguously confirmed by single-crystal X-ray diffraction analyses (1, 2, and 3) and Mosher's method (4, 5, and 6). In addition, lignans, (+)-eudesmin (11), (+)-methylpiperitol (12), (+)-pinoresinol (13), and (+)-galbelgin (16) exhibited inhibitory effects on N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation in human neutrophils with IC50 values of 8.71 ± 0.74 µM, 2.23 ± 0.92 µM, 6.81 ± 1.07 µM, and 7.15 ± 2.26 µM, respectively. The results revealed the anti-inflammatory potentials of Formosan Machilus japonica var. kusanoi.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Laurales/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Anti-Inflamatórios/uso terapêutico , Humanos , Estrutura Molecular , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia
9.
Molecules ; 25(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722482

RESUMO

One new dibenzocycloheptene, validinol (1), and one butanolide firstly isolated from the natural source, validinolide (2), together with 17 known compounds were isolated from the stem of Cinnamomum validinerve. Among the isolates, lincomolide A (3), secosubamolide (7), and cinnamtannin B1 (19) exhibited potent inhibition on both superoxide anion generation (IC50 values of 2.98 ± 0.3 µM, 4.37 ± 0.38 µM, and 2.20 ± 0.3 µM, respectively) and elastase release (IC50 values of 3.96 ± 0.31 µM, 3.04 ± 0.23 µM, and 4.64 ± 0.71 µM, respectively) by human neutrophils. In addition, isophilippinolide A (6), secosubamolide (7), and cinnamtannin B1 (19) showed bacteriostatic effects against Propionibacterium acnes in in vitro study, with minimal inhibitory concentration (MIC) values at 16 µg/mL, 16 µg/mL, and 500 µg/mL, respectively. Further investigations using the in vivo ear P. acnes infection model showed that the intraperitoneal administration of the major component cinnamtannin B1 (19) reduced immune cell infiltration and pro-inflammatory cytokines TNF-α and IL-6 at the infection sites. The results demonstrated the potential of cinnamtannin B1 (19) for acne therapy. In summary, these results demonstrated the anti-inflammatory potentials of Formosan C. validinerve during bacterial infections.


Assuntos
Acne Vulgar/tratamento farmacológico , Cinnamomum/química , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Acne Vulgar/microbiologia , Acne Vulgar/patologia , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Testes de Sensibilidade Microbiana , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Extratos Vegetais/química , Caules de Planta/química , Propionibacterium acnes/efeitos dos fármacos , Propionibacterium acnes/patogenicidade
10.
Molecules ; 25(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290267

RESUMO

Hepatocellular carcinoma (HCC) is considered to be a silent killer, and was the fourth leading global cause of cancer deaths in 2018. For now, sorafenib is the only approved drug for advanced HCC treatment. The introduction of additional chemopreventive agents and/or adjuvant therapies may be helpful for the treatment of HCC. After screening 3000 methanolic extracts from the Formosan plant extract bank, Excoecaria formosana showed glycine N-methyltransferase (GNMT)-promoter-enhancing and nuclear factor erythroid 2-related factor 2 (NRF2)-suppressing activities. Further, the investigation of the whole plant of E. formosana led to the isolation of a new steroid, 7α-hydroperoxysitosterol-3-O-ß-d-(6-O-palmitoyl)glucopyranoside (1); two new coumarinolignans, excoecoumarin A (2) and excoecoumarin B (3); a new diterpene, excoeterpenol A (4); and 40 known compounds (5-44). Among them, Compounds 38 and 40-44 at a 100 µM concentration showed a 2.97 ± 0.27-, 3.17 ± 1.03-, 2.73 ± 0.23-, 2.63 ± 0.14-, 6.57 ± 0.13-, and 2.62 ± 0.05-fold increase in GNMT promoter activity, respectively. In addition, Compounds 40 and 43 could reduce NRF2 activity, a transcription factor associated with drug resistance, in Huh7 cells with relative activity of 33.1 ± 0.2% and 45.2 ± 2.5%. These results provided the basis for the utilization of Taiwan agarwood for the development of anti-HCC agents.


Assuntos
Euphorbiaceae/química , Regulação da Expressão Gênica/efeitos dos fármacos , Glicina N-Metiltransferase/genética , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas , Humanos , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Relação Estrutura-Atividade , Taiwan
11.
Prostate ; 80(4): 305-318, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31905252

RESUMO

BACKGROUND: Cardiac glycosides, which inhibit Na+ /K+ -ATPase, display inotropic effects for the treatment of congestive heart failure and cardiac arrhythmia. Recent studies have suggested signaling downstream of Na+ /K+ -ATPase action in the regulation of cell proliferation and apoptosis and have revealed the anticancer activity of cardiac glycosides. The study aims to characterize the anticancer potential of ascleposide, a natural cardenolide, and to uncover its primary target and underlying mechanism against human castration-resistant prostate cancer (CRPC). METHODS: Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay, carboxyfluorescein succinimidyl ester staining assay and clonogenic examination. Flow cytometric analysis was used to detect the distribution of cell cycle phase, mitochondrial membrane potential, intracellular Na+ and Ca2+ levels, and reactive oxygen species production. Protein expression was examined using Western blot analysis. Endocytosis of Na+ /K+ -ATPase was determined using confocal immunofluorescence microscopic examination. RESULTS: Ascleposide induced an increase of intracellular Na+ and a potent antiproliferative effect. It also induced a decrease of G1 phase distribution while an increase in both G2/M and apoptotic sub-G1 phases, and downregulated several cell cycle regulator proteins, including cyclins, Cdk, p21, and p27 Cip/Kip proteins, Rb and c-Myc. Ascleposide decreased the expression of antiapoptotic Bcl-2 members (eg, Bcl-2 and Mcl-1) but upregulated proapoptotic member (eg, Bak), leading to a significant loss of mitochondrial membrane potential and activation of both caspase-9 and caspase-3. Ascleposide also dramatically induced tubulin acetylation, leading to inhibition of the catalytic activity of Na+ /K+ -ATPase. Notably, extracellular high K+ (16 mM) significantly blunted ascleposide-mediated effects. Furthermore, ascleposide induced a p38 MAPK-dependent endocytosis of Na+ /K+ -ATPase and downregulated the protein expression of Na+ /K+ -ATPase α1 subunit. CONCLUSION: Ascleposide displays antiproliferative and apoptotic activities dependent on the inhibition of Na+ /K+ -ATPase pumping activity through p38 MAPK-mediated endocytosis of Na+ /K+ -ATPase and downregulation of α1 subunit, which in turn cause tubulin acetylation and cell cycle arrest. Cell apoptosis is ultimately triggered by the activation of caspase cascade attributed to mitochondrial damage through the downregulation of Bcl-2 and Mcl-1 protein expressions while upregulation of Bak protein levels. The data also suggest the potential of ascleposide in anti-CRPC development.


Assuntos
Cardenolídeos/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Humanos , Masculino , Malvaceae/química , Células PC-3 , Extratos Vegetais/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Transdução de Sinais/efeitos dos fármacos
12.
Sci Rep ; 9(1): 423, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674997

RESUMO

Dengue virus (DENV) caused millions of infections around the world annually. Co-infection with different serotypes of DENV is associated with dengue hemorrhagic shock syndrome, leading to an estimate of 50% death rate. No approved therapies are currently available for the treatment of DENV infection. Hence, novel anti-DENV agents are urgently needed for medical therapy. Here we demonstrated that a natural product (2 R,4 R)-1,2,4-trihydroxyheptadec-16-yne (THHY), extracted from avocado (Persea americana) fruit, can inhibit DENV-2 replication in a concentration-dependent manner and efficiently suppresses replication of all DENV serotypes (1-4). We further reveal that the NF-κB-mediated interferon antiviral response contributes to the inhibitory effect of THHY on DENV replication. Using a DENV-infected ICR suckling mouse model, we found that THHY treatment caused an increased survival rate among mice infected with DENV. Collectively, these findings support THHY as a potential agent to control DENV infection.


Assuntos
Antivirais , Vírus da Dengue/fisiologia , Frutas/química , Interferons/metabolismo , NF-kappa B/metabolismo , Persea/química , Extratos Vegetais , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Extratos Vegetais/farmacologia
13.
Int J Mol Sci ; 19(7)2018 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-30037134

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease in the recent decades in both developed and developing countries, and is predicted to be the major etiology for liver transplantation in the next decade. Thus, pharmacological strategies to treat NAFLD are urgently needed. Natural products are considered an excellent source for drug discovery. By utilizing an image-based high-throughput screening with a library containing 3000 Taiwanese indigenous plant extracts, we discovered that the extract of Syzygium simile leaves (SSLE) has an anti-lipid droplet (LD) accumulation effect in hepatic cell lines. Analyses of the expression profile of genes involved in lipid metabolism revealed that SSLE suppressed the mRNA expression of CD36, fatty acid translocase. In agreement with this observation, we showed that SSLE inhibited CD36 protein expression and fatty acid uptake and has only limited effects on pre-formed LDs. Moreover, SSLE reduced LD accumulation and CD36 expression in enterocyte and macrophage cell lines. In conclusion, our findings suggest that SSLE could serve as a potential source for the discovery of novel therapeutic modalities for NAFLD and that the suppression of CD36 expression and fatty acid uptake could contribute to the lipid-lowering effect of SSLE.


Assuntos
Ácidos Graxos/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Syzygium/química , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos
14.
BMC Complement Altern Med ; 16: 94, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26955958

RESUMO

BACKGROUND: Cryptocarya-derived crude extracts and their compounds have been reported to have an antiproliferation effect on several types of cancers but their impact on oral cancer is less well understood. METHODS: We examined the cell proliferation effect and mechanism of C. concinna-derived cryptocaryone (CPC) on oral cancer cells in terms of cell viability, apoptosis, reactive oxygen species (ROS), mitochondrial depolarization, and DNA damage. RESULTS: We found that CPC dose-responsively reduced cell viability of two types of oral cancer cells (Ca9-22 and CAL 27) in MTS assay. The CPC-induced dose-responsive apoptosis effects on Ca9-22 cells were confirmed by flow cytometry-based sub-G1 accumulation, annexin V staining, and pancaspase analyses. For oral cancer Ca9-22 cells, CPC also induced oxidative stress responses in terms of ROS generation and mitochondrial depolarization. Moreover, γH2AX flow cytometry showed DNA damage in CPC-treated Ca9-22 cells. CPC-induced cell responses in terms of cell viability, apoptosis, oxidative stress, and DNA damage were rescued by N-acetylcysteine pretreatment, suggesting that oxidative stress plays an important role in CPC-induced death of oral cancer cells. CONCLUSIONS: CPC is a potential ROS-mediated natural product for anti-oral cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Cryptocarya/química , Neoplasias Bucais/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Pironas/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Humanos , Estresse Oxidativo , Extratos Vegetais/farmacologia , Pironas/farmacologia
15.
Int J Radiat Biol ; 92(5): 263-72, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26887975

RESUMO

Purpose Radiation combined with natural products may improve the radiosensitivity of cancer cells. This study investigated the potential of a combined modality treatment with Ultraviolet C (UVC; wavelength range 200-280 nm) and our previously identified anti-oral cancer agent (methanolic extracts of Cryptocarya concinna roots; MECCrt) in oral cancer cells. Materials and methods The mechanism of the possible synergy of UVC and MECCrt was explored in terms of cell viability, cell cycle, apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential (MitoMP), and DNA damage analyses. Results In cell viability (%) at 24 h treatment, the low doses of UVC (14 J/m(2)) and MECCrt (10 µg/ml) resulted in slight damage to human oral cancer Ca9-22 cells (83.2 and 80.4) but was less harmful to human oral normal HGF-1 cells (93.4 and 91.8, respectively). The combined treatment of UVC and MECCrt (UVC/MECCrt) had a lower viability (54.5%) than UVC or MECCrt alone in Ca9-22 cells but no showed significant change in HGF-1 cells. In Ca9-22 cells, the expression of flow cytometry-based apoptosis (sub-G1 phase, annexin V, and pancaspase assays) was significantly higher in UVC/MECCrt than in UVC or MECCrt alone (p < 0.0001). Using flow cytometry, intracellular ROS levels of UVC/MECCrt and MECCrt alone were higher than for UVC alone. MitoMP change and H2A histone family member X (γH2AX; H2AFX)-based DNA damage were synergistically inhibited and induced by MECCrt/UVC compared to its single treatment in Ca9-22 cells, respectively. Conclusion UVC plus MECCrt treatment had selective killing and synergistic anti-proliferative effects against oral cancer cells involving apoptosis, oxidative stress, and DNA damage. This combination therapy appears to have a great clinical potential against oral cancer cells.


Assuntos
Cryptocarya/química , Dano ao DNA , Neoplasias Bucais/fisiopatologia , Neoplasias Bucais/terapia , Extratos Vegetais/química , Raízes de Plantas/química , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Metanol/química , Neoplasias Bucais/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Extratos Vegetais/administração & dosagem , Tolerância a Radiação/efeitos dos fármacos , Dosagem Radioterapêutica , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Terapia Ultravioleta/métodos
16.
PeerJ ; 4: e2758, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28344896

RESUMO

BACKGROUND: T cells play a pivotal role in the adaptive immunity that participates in a wide range of immune responses through a complicated cytokine network. Imbalance of T-cell responses is involved in several immune disorders. Neolitsea species, one of the biggest genera in the family Lauraceae, have been employed widely as folk medicines for a long time in Asia. Previous phytochemical investigations revealed the abundance of terpenes in the leaves of N. hiiranensis, an endemic Neolitsea in Taiwan, and demonstrated anti-inflammatory activities. However, the effect of N. hiiranensis on the functionality of immune cells, especially T cells, is still unclear. In this study, we utilize in vitro and in vivo approaches to characterize the effects of leaves of N. hiiranensis and its terpenoids on adaptive immune responses. METHODS: Dried leaves of N. hiiranensis were extracted three times with cold methanol to prepare crude extracts and to isolate its secondary metabolites. The ovalbumin (OVA)-sensitized BALB/c mice were administrated with N. hiiranensis extracts (5-20 mg/kg). The serum and splenocytes of treated mice were collected to evaluate the immunomodulatory effects of N. hiiranensis on the production of OVA-specific antibodies and cytokines. To further identify the N. hiiranensis-derived compounds with immunomodulatory potentials, OVA-primed splenocytes were treated with compounds isolated from N. hiiranensis by determining the cell viability, cytokine productions, and mRNA expression in the presence of OVA in vitro. RESULTS: Crude extracts of leaves of N. hiiranensis significantly inhibited IL-12, IFN-γ, and IL-2 cytokine productions as well as the serum levels of antigen-specific IgM and IgG2ain vivo. Two of fourteen selected terpenoids and one diterpenoid derived from the leaves of N. hiiranensis suppressed IFN-γ in vitro. In addition, ß-caryophyllene oxide attenuated the expression of IFN-γ, T-bet, and IL-12Rß2 in a dose-dependent manner. N. hiiranensis-derived ß-caryophyllene oxide inhibited several aspects of adaptive immune responses, including T-cell differentiation, IFN-γ production, and Th1-assocaited genes. CONCLUSION: As IFN-γ is the key cytokine secreted by T helper-1 cells and plays a pivotal role in Th1 immune responses, our results suggested that the N. hiiranensis and its terpenoids may possess potential therapeutic effects on Th1-mediated immune disorders.

17.
Nat Prod Commun ; 10(6): 845-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26197496

RESUMO

One new γ-lactone, namely calolactone (1), together with one new drimane-type sesquiterpene, namely caloterpene (2), were isolated from the pericarp of Calocedrus formosana Florin. Their structures were elucidated by spectroscopic and mass spectrometric analysis.


Assuntos
Cupressaceae/química , Furanos/química , Extratos Vegetais/química , Sesquiterpenos/química , Frutas/química , Furanos/isolamento & purificação , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Sesquiterpenos/isolamento & purificação
18.
Oncotarget ; 6(27): 24032-46, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26125228

RESUMO

Epi-reevesioside F, a new cardiac glycoside isolated from the root of Reevesia formosana, displayed potent activity against glioblastoma cells. Epi-reevesioside F was more potent than ouabain with IC50 values of 27.3±1.7 vs. 48.7±1.8 nM (P < 0.001) and 45.0±3.4 vs. 81.3±4.3 nM (P < 0.001) in glioblastoma T98 and U87 cells, respectively. However, both Epi-reevesioside F and ouabain were ineffective in A172 cells, a glioblastoma cell line with low Na+/K+-ATPase α3 subunit expression. Epi-reevesioside F induced cell cycle arrest at S and G2 phases and apoptosis. It also induced an increase of intracellular concentration of Na+ but not Ca2+, cleavage and exposure of N-terminus of Bak, loss of mitochondrial membrane potential, inhibition of Akt activity and induction of caspase cascades. Potassium supplements significantly inhibited Epi-reevesioside F-induced effects. Notably, Epi-reevesioside F caused cytosolic acidification that was highly correlated with the anti-proliferative activity. In summary, the data suggest that Epi-reevesioside F inhibits Na+/K+-ATPase, leading to overload of intracellular Na+ and cytosolic acidification, Bak activation and loss of mitochondrial membrane potential. The PI3-kinase/Akt pathway is inhibited and caspase-dependent apoptosis is ultimately triggered in Epi-reevesioside F-treated glioblastoma cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Ouabaína/química , Saponinas/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Cálcio/química , Linhagem Celular Tumoral , Proliferação de Células , Citosol/metabolismo , Citometria de Fluxo , Glioblastoma/tratamento farmacológico , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial , Potássio/química , Estrutura Terciária de Proteína , Rodaminas/química , Sódio/química
19.
ScientificWorldJournal ; 2014: 180462, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25379520

RESUMO

Cryptocarya-derived natural products were reported to have several biological effects such as the antiproliferation of some cancers. The possible antioral cancer effect of Cryptocarya-derived substances was little addressed as yet. In this study, we firstly used the methanolic extracts of C. concinna Hance roots (MECCrt) to evaluate its potential function in antioral cancer bioactivity. We found that MECCrt significantly reduced cell viability of two oral cancer Ca9-22 and CAL 27 cell lines in dose-responsive manners (P < 0.01). The percentages of sub-G1 phase and annexin V-positive of MECCrt-treated Ca9-22 and CAL 27 cell lines significantly accumulated (P < 0.01) in a dose-responsive manner as evidenced by flow cytometry. These apoptotic effects were associated with the findings that intracellular ROS generation was induced in MECCrt-treated Ca9-22 and CAL 27 cell lines in dose-responsive and time-dependent manners (P < 0.01). In a dose-responsive manner, MECCrt also significantly reduced the mitochondrial membrane potential in these two cell lines (P < 0.01-0.05). In conclusion, we demonstrated that MECCrt may have antiproliferative potential against oral cancer cells involving apoptosis, ROS generation, and mitochondria membrane depolarization.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cryptocarya/química , Células Epiteliais/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/agonistas , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fase G1/efeitos dos fármacos , Humanos , Metanol , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Extratos Vegetais/química , Raízes de Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Solventes
20.
Nat Prod Commun ; 9(8): 1127-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25233588

RESUMO

Phytochemical investigation of the methanol extract of the wood of Cunninghamia konishii resulted in the isolation of two new acidic labdane-type diterpenoids, 12(S)-hydroxy-15,16-epoxylabda-8(17),13-dien-19-oic acid (1) and 12(S)-hydroxy-15,16-epoxylabda-8(17),13-dien-18-oic acid (2), along with one known labdane-type diterpene, 7,13E-labdadien-15-ol (3). Their structures were determined by analysis of spectroscopic data and comparison with the data of known analogues.


Assuntos
Cunninghamia/química , Diterpenos/química , Extratos Vegetais/química , Madeira/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA