Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 652: 123853, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38280500

RESUMO

Respiratory infection caused by multi-drug resistant (MDR) Pseudomonas aeruginosa is challenging to treat. In this study, we investigate the optimal dose of anti-pseudomonas phage PEV31 (103, 105, and 108 PFU/mL) combined with ciprofloxacin (ranging from 1/8× MIC to 8× MIC) to treat the MDR P. aeruginosa strain FADD1-PA001 using time-kill studies. We determined the impact of phage growth kinetics in the presence of ciprofloxacin through one-step growth analysis. Single treatments with either phage PEV31 or ciprofloxacin (except at 8× MIC) showed limited bactericidal efficiency, with bacterial regrowth observed at 48 h. The most effective treatments were PEV31 at multiplicity of infection (MOI) of 0.1 and 100 combined with ciprofloxacin at concentrations above 1× MIC, resulting in a >4 log10 reduction in bacterial counts. While the burst size of phage PEV31 was decreased with increasing ciprofloxacin concentration, robust antimicrobial effects were still maintained in the combination treatment. Aerosol samples collected from vibrating mesh nebulization of the combination formulation at phage MOI of 100 with 2× MIC effectively inhibited bacterial density. In summary, our combination treatments eradicated in vitro bacterial growth and sustained antimicrobial effects for 48 h. These results indicated the potential application of nebulization-based strategies for the combination treatment against MDR lung infections.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Humanos , Ciprofloxacina/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Aerossóis e Gotículas Respiratórios , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Terapia Respiratória , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana
2.
AAPS J ; 21(3): 49, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30949776

RESUMO

Antibiotic resistance in Pseudomonas aeruginosa biofilms necessitates the need for novel antimicrobial therapy with anti-biofilm properties. Bacteriophages (phages) are recognized as an ideal biopharmaceutical for combating antibiotic-resistant bacteria especially when used in combination with antibiotics. However, previous studies primarily focused on using phages against of P. aeruginosa biofilms of laboratory strains. In the present study, biofilms of six P. aeruginosa isolated from cystic fibrosis and wound patients, and one laboratory strain was treated singly and with combinations of anti-Pseudomonas phage PEV20 and ciprofloxacin. Of these strains, three were highly susceptible to the phage, while one was partially resistant and one was completely resistant. Combination treatment with PEV20 and ciprofloxacin enhanced biofilm eradication compared with single treatment. Phage and ciprofloxacin synergy was found to depend on phage-resistance profile of the target bacteria. Furthermore, phage and ciprofloxacin combination formulation protected the lung epithelial and fibroblast cells from P. aeruginosa and promoted cell growth. The results demonstrated that thorough screening of phage-resistance is crucial for designing phage-antibiotic formulation. The addition of highly effective phage could reduce the ciprofloxacin concentration required to combat P. aeruginosa infections associated with biofilm in cystic fibrosis and wound patients.


Assuntos
Antibacterianos/administração & dosagem , Terapia Biológica/métodos , Fibrose Cística/terapia , Infecções por Pseudomonas/terapia , Fagos de Pseudomonas , Pseudomonas aeruginosa/virologia , Infecção dos Ferimentos/terapia , Biofilmes/efeitos dos fármacos , Linhagem Celular , Ciprofloxacina/administração & dosagem , Terapia Combinada , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Infecção dos Ferimentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA