Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
CNS Neurosci Ther ; 30(2): e14592, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385622

RESUMO

AIMS: Disturbances in the circadian rhythm are positively correlated with the processes of aging and related neurodegenerative diseases, which are also associated with brain iron accumulation. However, the role of brain iron in regulating the biological rhythm is poorly understood. In this study, we investigated the impact of brain iron levels on the spontaneous locomotor activity of mice with altered brain iron levels and further explored the potential mechanisms governing these effects in vitro. RESULTS: Our results revealed that conditional knockout of ferroportin 1 (Fpn1) in cerebral microvascular endothelial cells led to brain iron deficiency, subsequently resulting in enhanced locomotor activity and increased expression of clock genes, including the circadian locomotor output cycles kaput protein (Clock) and brain and muscle ARNT-like 1 (Bmal1). Concomitantly, the levels of period circadian regulator 1 (PER1), which functions as a transcriptional repressor in regulating biological rhythm, were decreased. Conversely, the elevated brain iron levels in APP/PS1 mice inhibited autonomous rhythmic activity. Additionally, our findings demonstrate a significant decrease in serum melatonin levels in Fpn1cdh5 -CKO mice compared with the Fpn1flox/flox group. In contrast, APP/PS1 mice with brain iron deposition exhibited higher serum melatonin levels than the WT group. Furthermore, in the human glioma cell line, U251, we observed reduced PER1 expression upon iron limitation by deferoxamine (DFO; iron chelator) or endogenous overexpression of FPN1. When U251 cells were made iron-replete by supplementation with ferric ammonium citrate (FAC) or increased iron import through transferrin receptor 1 (TfR1) overexpression, PER1 protein levels were increased. Additionally, we obtained similar results to U251 cells in mouse cerebellar astrocytes (MA-c), where we collected cells at different time points to investigate the rhythmic expression of core clock genes and the impact of DFO or FAC treatment on PER1 protein levels. CONCLUSION: These findings collectively suggest that altered iron levels influence the circadian rhythm by regulating PER1 expression and thereby modulating the molecular circadian clock. In conclusion, our study identifies the regulation of brain iron levels as a potential new target for treating age-related disruptions in the circadian rhythm.


Assuntos
Ferro , Melatonina , Camundongos , Humanos , Animais , Ferro/metabolismo , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética
2.
Front Cell Dev Biol ; 11: 1184632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346174

RESUMO

Sevoflurane (Sev) is one of the commonly used inhalation anesthetic chemicals in clinics. It has great impact on spermatogenesis and fertilization in male animals. The underlying mechanism remains largely unexplored. Based on our previous research, we hypothesized that Sev induced iron metabolism disturbance in the testis and epididymis and inhibited the spermatogenesis. In this study, two-month-old C57BL/6 male mice were treated with 3% Sev for 6 h, and their fertility (including sperm concentration, sperm mobility, and the number of offspring) was evaluated. Mice testis, epididymis, and sperm were harvested and subjected to Western blot analysis and immunofluorescence analysis. Iron levels were reflected by the gene expression of iron metabolism-related proteins (including ferritin, TfR1, and FpN1) and ICP-MS and Perl's iron staining. Electron transport and oxidative phosphorylation levels were measured by Oxygraph-2k and ATP contents. The activity of ribonucleotide reductase was evaluated by assay kit. DNA synthesis status in testis and/or epididymis was marked with BrdU. Cell proliferation was evaluated by double immunofluorescence staining of specific protein marker expression. Our results revealed that the mice exposed to Sev showed damaged testicular and epididymis structure and significantly reduced the sperm concentration, sperm motility, and fertility. Sev decreases the iron levels through down-regulating the expression of H-ferritin, L-ferritin, and FpN1, and up-regulating the expression of TfR1 in the testis and epididymis. Iron levels also significantly reduced in germ cells which decrease the number of germ cells, including sperm, Sertoli cells, and primary spermatocyte. Iron deficiency not only decreases electron transport, oxidative phosphorylation level, and ATP production but also suppresses the activity of ribonucleotide reductase and the expression of Ki67, DDX4, GATA1, and SCP3, indicating that Sev affects the spermatogenesis and development. Meanwhile, Sev impaired the blood-testis barrier by decreasing the ZO1 expression in the testis and epididymis. The damage effect induced by Sev can be significantly ameliorated by iron supplementation. In conclusion, our study illustrates a new mechanism by which Sev inhibits spermatogenesis and fertility through an oxidative phosphorylation pathway due to iron deficiency of epididymis and testis or sperm. Furthermore, the damaging effects could be ameliorated by iron supplementation.

3.
Sci China Life Sci ; 66(8): 1841-1857, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929272

RESUMO

Iron is important for life, and iron deficiency impairs development, but whether the iron level regulates neural differentiation remains elusive. In this study, with iron-regulatory proteins (IRPs) knockout embryonic stem cells (ESCs) that showed severe iron deficiency, we found that the Pax6- and Sox2-positive neuronal precursor cells and Tuj1 fibers in IRP1-/-IRP2-/- ESCs were significantly decreased after inducing neural differentiation. Consistently, in vivo study showed that the knockdown of IRP1 in IRP2-/- fetal mice remarkably affected the differentiation of neuronal precursors and the migration of neurons. These findings suggest that low intracellular iron status significantly inhibits neurodifferentiation. When supplementing IRP1-/-IRP2-/- ESCs with iron, these ESCs could differentiate normally. Further investigations revealed that the underlying mechanism was associated with an increase in reactive oxygen species (ROS) production caused by the substantially low level of iron and the down-regulation of iron-sulfur cluster protein ISCU, which, in turn, affected the proliferation and differentiation of stem cells. Thus, the appropriate amount of iron is crucial for maintaining normal neural differentiation that is termed ferrodifferentiation.


Assuntos
Deficiências de Ferro , Proteínas Ferro-Enxofre , Espécies Reativas de Oxigênio , Animais , Camundongos , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Molecules ; 25(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708908

RESUMO

Herbs derived from Taraxacum genus have been used as traditional medicines and food supplements in China for hundreds of years. Taraxacum mongolicum is a famous traditional Chinese medicine derived from Taraxacum genus for the treatment of inflammatory disorders and viral infectious diseases. In the present study, the bioactive phenolic chemical profiles and antioxidant activities of flowers, leaves, and roots of Taraxacum mongolicum were investigated. Firstly, a high performance liquid chromatography method combined with segmental monitoring strategy was employed to simultaneously determine six bioactive phenolic compounds in Taraxacum mongolicum samples. Moreover, multivariate statistical analysis, including hierarchical clustering analysis, principal component analysis, and partial least squares discriminant analysis were performed to compare and discriminate different parts of Taraxacum mongolicum based on the quantitative data. The results showed that three phenolic compounds, caftaric acid, caffeic acid, and luteolin, could be regarded as chemical markers for the differences of flowers, leaves, and roots of Taraxacum mongolicum. In parallel, total phenolic contents, total flavonoid contents and antioxidant activities of different parts of Taraxacum mongolicum were also evaluated and compared. It is clear that Taraxacum mongolicum had antioxidant properties, and the antioxidant capacities of different parts of Taraxacum mongolicum in three antioxidant assays showed a similar tendency: Flowers ≈ leaves > roots, which revealed a positive relationship with their total phenolic and flavonoid contents. Furthermore, to find the potential antioxidant components of Taraxacum mongolicum, the latent relationships of the six bioactive phenolic compounds and antioxidant activities of Taraxacum mongolicum were investigated by Pearson correlation analysis. The results indicated caftaric acid and caffeic acid could be the potential antioxidant ingredients of Taraxacum mongolicum. The present work may facilitate better understanding of differences of bioactive phenolic constituents and antioxidant activities of different parts of Taraxacum mongolicum and provide useful information for utilization of this herbal medicine.


Assuntos
Antioxidantes/química , Fenóis/química , Compostos Fitoquímicos/química , Taraxacum/química , Antioxidantes/classificação , Antioxidantes/isolamento & purificação , Ácidos Cafeicos/química , Cromatografia Líquida de Alta Pressão , Flores/química , Luteolina/química , Fenóis/classificação , Fenóis/isolamento & purificação , Compostos Fitoquímicos/classificação , Compostos Fitoquímicos/isolamento & purificação , Folhas de Planta/química , Raízes de Plantas/química
5.
Neurochem Int ; 135: 104693, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035889

RESUMO

Maternal anesthetic exposure during pregnancy is associated with an increased risk of cognitive impairment in offspring. The balance of cerebral iron metabolism is essential for the development of brain tissue. Iron deficiency affects the myelinogenesis and nerve tissue development, especially in fetus or infant, which has a key role in cognitive function. We aimed to investigate whether maternal sevoflurane (Sev) exposure caused cognitive impairment in offspring through inducing iron deficiency and inhibiting myelinogenesis. Pregnant mice (gestation stage day 14) were treated with 2% Sev for 6 h. Cognitive function of offspring mice was determined by the Morris water maze and Context fear conditioning test. Iron levels were assayed by Perl's iron staining and synchrotron imaging. Hippocampus and cortex tissues or cerebral microvascular endothelial cells of offspring mice (postnatal day 35) were harvested and subjected to Western blot and/or immunhistochemistry to assess ferritin, transferrin receptor 1(TfR1), Ferroportin-1 (FpN1), myelin basic protein (MBP), tight junction protein ZO-1, occludin, and claudin-5 levels. Beginning with postnatal day 30, the offspring were treated with iron therapy for 30 days, and the indicators above were tested. Our results showed Sev dramatically decreased the iron levels of brain and impaired cognitive function in offspring mice. Sev decreased the expression of heavy chain ferritin (FtH), light chain ferritin (FtL), MBP, ZO-1, occludin, claudin-5, and FpN1, and increased TfR1 in hippocampus and cortex or cerebral microvascular endothelial cells of offspring mice, indicating that Sev caused the iron deficiency and impaired the myelinogenesis in the brain of offspring. Interestingly, iron therapy prompted the myelinogenesis and improved impaired cognitive function at postnatal day 60. Our research uncovered a new mechanism which showed that iron deficiency induced by Sev and myelin formation disorder due to decreased iron of brain may be an important risk factor for cognitive impairment in offspring. It was necessary for offspring to be supplied iron supplement whose mother suffered exposure to sevoflurane during pregnancy.


Assuntos
Anemia Ferropriva/induzido quimicamente , Anestésicos Inalatórios/toxicidade , Disfunção Cognitiva/induzido quimicamente , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Sevoflurano/toxicidade , Administração por Inalação , Anemia Ferropriva/metabolismo , Anemia Ferropriva/patologia , Anestésicos Inalatórios/administração & dosagem , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Sevoflurano/administração & dosagem
6.
Adv Exp Med Biol ; 1173: 21-32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456203

RESUMO

Iron is an essential trace element in the human body, but excess iron is toxic as it contributes to oxidative damage. To keep iron concentration within the optimal physiologic range, iron metabolism at the cellular level and the whole systemic level are tightly regulated. Balance of iron homeostasis depends on the expression levels and activities of iron carriers, iron transporters, and iron regulatory and storage proteins. Divalent metal transporter 1 (DMT1) at the apical membrane of intestinal enterocyte brings in non-heme iron from the diet, whereas ferroportin 1 (FPN1) at the basal membrane exports iron into the circulation. Plasma transferrin (Tf) then carries iron to various tissues and cells. After binding to transferrin receptor 1 (TfR1), the complex is endocytosed into the cell, where iron enters the cytoplasm via DMT1 on the endosomal membrane. Free iron is either utilized in metabolic processes, such as synthesis of hemoglobin and Fe-S cluster, or sequestered in the cytosolic ferritin, serving as a cellular iron store. Excess iron can be exported from the cell via FPN1. The liver-derived peptide hepcidin plays a major regulatory role in controlling FPN1 level in the enterocyte, and thus controls the whole-body iron absorption. Inside the cells, iron regulatory proteins (IRPs) modulate the expressions of DMT1, TfR1, ferritin, and FPN1 via binding to the iron-responsive element (IRE) in their mRNAs. Both the release of hepcidin and the IRP-IRE interaction are coordinated with the fluctuation of the cellular iron level. Therefore, an adequate and steady iron supplement is warranted for the utilization of cells around the body. Investigations on the molecular mechanisms of cellular iron metabolism and regulation could advance the fields of iron physiology and pathophysiology.


Assuntos
Ferro/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Enterócitos/metabolismo , Ferritinas/metabolismo , Homeostase , Humanos , Sobrecarga de Ferro , Receptores da Transferrina/metabolismo , Fatores de Transcrição/metabolismo , Transferrina/metabolismo
7.
Biochim Biophys Acta Gene Regul Mech ; 1862(8): 846-857, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31054961

RESUMO

Heat shock factor 1 (HSF1) is a transcription factor essential for tumorigenesis, and targeting HSF1 may be effective in combined therapeutics for cervical cancer. Cyclosporin A (CsA) is an immunosuppressant that has revolutionized organ transplantation. However, the roles and regulatory mechanisms by which CsA modulates HSP expression remain largely unknown. In this study, we found that CsA pretreatment prevented induction of HSPs during heat shock by enhancing the phosphorylation of Ser303 and Ser307 on HSF1 and thus inhibiting its transcriptional activity. Suppression of ERK1/2, GSK3ß and CK2 activities attenuated CsA-induced down-regulation of HSP expression and up-regulation of HSF1 phosphorylation. CsA interfered with HSF1-SSBP1 complex formation and HSF1 nuclear translocation and recruitment to the HSP70 promoter. CsA clearly caused HeLa cell death during proteotoxic stress through reduced expression of HSPs. These results indicate that CsA suppresses HSP induction during heat shock by regulating the phosphorylation and nuclear translocation of HSF1. Our results provide a conceptual framework for the development of novel therapeutic strategies for cervical cancer through application of CsA during hyperthermia or chemotherapy.


Assuntos
Ciclosporina/farmacologia , Fatores de Transcrição de Choque Térmico/metabolismo , Hipertermia Induzida/métodos , Neoplasias do Colo do Útero/metabolismo , Terapia Combinada , Feminino , Proteínas de Choque Térmico HSP70/genética , Células HeLa , Resposta ao Choque Térmico , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Serina/metabolismo , Neoplasias do Colo do Útero/terapia
8.
ACS Nano ; 12(5): 4123-4139, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29617109

RESUMO

Excess iron deposition in the brain often causes oxidative stress-related damage and necrosis of dopaminergic neurons in the substantia nigra and has been reported to be one of the major vulnerability factors in Parkinson's disease (PD). Iron chelation therapy using deferoxamine (DFO) may inhibit this nigrostriatal degeneration and prevent the progress of PD. However, DFO shows very short half-life in vivo and hardly penetrates the blood brain barrier (BBB). Hence, it is of great interest to develop DFO formulations for safe and efficient intracerebral drug delivery. Herein, we report a polymeric nanoparticle system modified with brain-targeting peptide rabies virus glycoprotein (RVG) 29 that can intracerebrally deliver DFO. The nanoparticle system penetrates the BBB possibly through specific receptor-mediated endocytosis triggered by the RVG29 peptide. Administration of these nanoparticles significantly decreased iron content and oxidative stress levels in the substantia nigra and striatum of PD mice and effectively reduced their dopaminergic neuron damage and as reversed their neurobehavioral deficits, without causing any overt adverse effects in the brain or other organs. This DFO-based nanoformulation holds great promise for delivery of DFO into the brain and for realizing iron chelation therapy in PD treatment.


Assuntos
Encéfalo/metabolismo , Desferroxamina/administração & dosagem , Sistemas de Liberação de Medicamentos , Glicoproteínas/química , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Doença de Parkinson/tratamento farmacológico , Fragmentos de Peptídeos/química , Proteínas Virais/química , Animais , Encéfalo/efeitos dos fármacos , Desferroxamina/farmacocinética , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Glicoproteínas/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Sideróforos/administração & dosagem , Sideróforos/farmacocinética , Sideróforos/farmacologia , Sideróforos/uso terapêutico , Proteínas Virais/administração & dosagem
9.
J Nanobiotechnology ; 15(1): 42, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578696

RESUMO

BACKGROUND: Iron deficiency in children can have significant neurological consequences, and iron supplementation is an effective treatment of choice. However, traditional routes of iron supplementation do not allow efficient iron delivery to the brain due to the presence of the blood-brain barrier. So an easily delivered iron formulation with high absorption efficiency potentially could find widespread application in iron deficient infants. RESULTS: In this study, we have developed and characterized a nanovesicular formulation of ferric ammonium citrate (ferric ammonium citrate nanoliposomes, FAC-LIP) and have shown that it can increase brain iron levels in rats following nasal administration. FAC was incorporated into liposomes with high efficiency (97%) and the liposomes were small (40 nm) and stable. Following intranasal delivery in rats, FAC-LIP significantly increased the iron content in the olfactory bulb, cerebral cortex, striatum, cerebellum and hippocampus, and was more efficient at doing so than FAC alone. No signs of apoptosis or abnormal cell morphology were observed in the brain following FAC-LIP administration, and there were no significant changes in the levels of SOD and MDA, except in the cerebellum and hippocampus. No obvious morphological changes were observed in lung epithelial cells or tracheal mucosa after nasal delivery, suggesting that the formulation was not overtly toxic. CONCLUSIONS: In this study, nanoscale FAC-LIP proved an effective system delivering iron to the brain, with high encapsulation efficiency and low toxicity in rats. Our studies provide the foundation for more detailed investigations into the applications of niosomal nasal delivery of liposomal formulations of iron as a simple and safe therapy for iron deficiency anemia. Graphical abstract The diagrammatic sketch of "Nasal delivery of nanoliposome-encapsulated ferric ammonium citrate can increase the iron content of rat brain". Nanoliposome-encapsulated ferric ammonium citrate (FAC-LIP) was successfully prepared and intranasal administration of FAC-LIP increased both the total iron contents and iron storage protein (FTL) expression in rat olfactory bulb, cerebral cortex, striatum and hippocampus, compared with those of FAC groups. Moreover, there was not overtly toxic affects to brain, lung epithelial cells and tracheal mucosa.


Assuntos
Encéfalo/metabolismo , Compostos Férricos/administração & dosagem , Compostos Férricos/farmacocinética , Compostos de Amônio Quaternário/administração & dosagem , Compostos de Amônio Quaternário/farmacocinética , Administração Intranasal , Animais , Apoptose/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Ferro/administração & dosagem , Ferro/farmacocinética , Lipossomos/química , Lipossomos/ultraestrutura , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
10.
J Cell Biochem ; 117(1): 207-17, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26100117

RESUMO

Glutaredoxin 5 (GLRX5) is a 156 amino acid mitochondrial protein that plays an essential role in mitochondrial iron-sulfur cluster transfer. Mutations in this protein were reported to result in sideroblastic anemia and variant nonketotic hyperglycinemia in human. Recently, we have characterized a Chinese congenital sideroblastic anemia patient who has two compound heterozygous missense mutations (c. 301 A>C and c. 443 T>C) in his GLRX5 gene. Herein, we developed a GLRX5 knockout K562 cell line and studied the biochemical functions of the identified pathogenic mutations and other conserved amino acids with predicted essential functions. We observed that the K101Q mutation (due to c. 301 A>C mutation) may prevent the binding of [Fe-S] to GLRX5 protein, while L148S (due to c. 443 T>C mutation) may interfere with [Fe-S] transfer from GLRX5 to iron regulatory protein 1 (IRP1), mitochondrial aconitase (m-aconitase) and ferrochelatase. We also demonstrated that L148S is functionally complementary to the K51del mutant with respect to Fe/S-ferrochelatase, Fe/S-IRP1, Fe/S-succinate dehydrogenase, and Fe/S-m-aconitase biosynthesis and lipoylation of pyruvate dehydrogenase complex and α-ketoglutarate dehydrogenase complex. Furthermore, we demonstrated that the mutations of highly conserved amino acid residues in GLRX5 protein can have different effects on downstream Fe/S proteins. Collectively, our current work demonstrates that GLRX5 protein is multifunctional in [Fe-S] protein synthesis and maturation and defects of the different amino acids of the protein will lead to distinct effects on downstream Fe/S biosynthesis.


Assuntos
Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Linhagem Celular , Glutarredoxinas/genética , Humanos , Proteínas Ferro-Enxofre/genética , Mutação/genética , Ligação Proteica
11.
Biol Trace Elem Res ; 162(1-3): 181-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25296704

RESUMO

To investigate the effect of iron liposome supplementation, a rat model of exercise-associated anemia was established by subjecting the animals to high-intensity running exercises for 4 weeks. Rats with confirmed anemia were strenuously exercised for another 2 weeks while receiving iron supplements by intragastric administration of ferric ammonium citrate (FAC) liposomes or heme iron liposomes. Control groups were administered equivalent amounts of FAC, heme iron, or blank liposomes. Subsequently, complete blood count (CBC), serum iron, and liver iron levels were tested to determine the efficiency of iron liposomes in relieving anemia. Superoxide dismutase (SOD) and malonyldialdehyde (MDA) were also detected to determine potential side effects of iron supplementation. The CBC, as well as serum iron and liver iron contents, significantly increased and reached much higher levels in anemic rats treated with iron liposomes, compared with those of control groups. The increase of SOD and decrease of MDA levels were also observed after supplementation with iron liposomes. These results demonstrate that iron liposomes can efficiently relieve the iron deficiency in strenuously exercised rats and may potentially be used as a supplement for the treatment of exercise-associated iron deficiency anemia with minimal side effects.


Assuntos
Ferro/administração & dosagem , Lipossomos/química , Anemia Ferropriva/sangue , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/metabolismo , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Hepcidinas/genética , Ferro/sangue , Ferro/metabolismo , Ferro/uso terapêutico , Lipossomos/administração & dosagem , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
12.
Acta Biochim Biophys Sin (Shanghai) ; 45(11): 912-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24080747

RESUMO

Alcoholic liver disease (ALD) is a serious liver problem in western countries. Our previous study has demonstrated that vitamin C plays a protective role in ALD. The vitamin C homeostasis is tightly regulated by sodium-dependent vitamin C transporters (SVCTs) 1 and 2. But the role of two SVCTs in ALD is less understood. In this study, we examined the expression patterns of two SVCTs in mice after alcohol consumption. Our results suggested that alcohol consumption obviously increased the expression of two SVCTs in liver and SVCT1 in kidney and intestine, which is important for vitamin C absorption. Vitamin C supplement increased the sera vitamin C content and ameliorated the symptom of ALD. Intestinal absorption and renal re-absorption mediated by SVCT1 are key factors to increase the sera vitamin C content after alcohol consumption. We proposed that both reactive oxygen species and low vitamin C concentration regulate the expression of SVCTs, and the protective role of vitamin C is mediated by suppressing the stability of hypoxia-inducible factor-1α. Thus, our study is significant for the understanding of vitamin C homeostasis in ALD and for better use of other antioxidants in ALD therapy.


Assuntos
Consumo de Bebidas Alcoólicas , Perfilação da Expressão Gênica , Transportadores de Sódio Acoplados à Vitamina C/genética , Animais , Ácido Ascórbico/sangue , Sequência de Bases , Western Blotting , Cromatografia Líquida de Alta Pressão , Primers do DNA , Etanol/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
13.
Int J Pharm ; 454(1): 82-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23850818

RESUMO

Supplementation with iron-fortified foods is an effective method for treating iron deficiency diseases. However, traditional iron agents used to treat anemia of inflammation (AI) have little effect. In this study, two types of iron liposomes, heme liposomes (HEME-LIP) and ferric citrate liposomes (FAC-LIP), were prepared by the rotary-evaporated film-ultrasonication method, and the encapsulation efficiencies, microstructures, size distributions and zeta potentials were assessed. Both types of iron liposomes showed stable physical characteristics. When used to treat rat models of AI, FAC-LIP and HEME-LIP could increase serum iron levels by 119% and 54% higher than did ferric citrate (FAC) and heme, respectively. Furthermore, the hepcidin, a key regulator of iron homeostasis was up-regulated by these iron liposomes, especially by HEME-LIP. These results indicate that the absorption of iron liposomes was improved over that of unencapsulated iron agents. Thus, iron liposomes may be used to fortify food in treating iron deficiency diseases, especially AI.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Compostos Férricos/administração & dosagem , Hematínicos/administração & dosagem , Heme/administração & dosagem , Inflamação/complicações , Administração Oral , Anemia Ferropriva/sangue , Anemia Ferropriva/etiologia , Animais , Química Farmacêutica , Modelos Animais de Doenças , Compostos Férricos/química , Hematínicos/química , Heme/química , Hepcidinas/sangue , Absorção Intestinal , Ferro/sangue , Lipossomos , Masculino , Ratos , Ratos Sprague-Dawley , Tecnologia Farmacêutica/métodos , Fatores de Tempo , Ultrassom
14.
Neurochem Int ; 62(7): 940-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23500604

RESUMO

Previous pharmacological studies have indicated that AC11 (a standardized aqueous extract of Uncaria tomentosa) has beneficial effects on DNA repair and immune function. However, its benefits go beyond this. The present study utilized electron spin resonance (ESR) and spin trapping technique, as well as the 6-OHDA-induced cell damage and transgenic Caenorhabditis elegans models, towards exploring the antioxidant and neuroprotective ability of AC11. Our results showed that AC11 could scavenge several types of free radicals, especially hydroxyl radicals (60% of hydroxyl radicals were scavenged by 30 µg/ml of AC11). In SH-SY5Y cells, we found that AC11 could dose dependently protect 6-OHDA induced cell damage by increase cell viability and mitochondrial membrane potential. AC11 pretreatment also significantly decreased the level of lipid peroxidation, intracellular reactive oxygen species and nitric oxide in 6-OHDA treated cells. In NL5901 C. elegans, 10 µg/ml AC11 could reduce the aggregation of α-synuclein by 40%. These findings encourage further investigation on AC11 and its active constituent compounds, as possible therapeutic intervention against Parkinson's disease.


Assuntos
Unha-de-Gato/química , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Extratos Vegetais/farmacologia , alfa-Sinucleína/metabolismo , Animais , Caenorhabditis elegans , Sobrevivência Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/metabolismo , Oxidopamina/farmacologia , Espécies Reativas de Oxigênio/metabolismo
15.
Sci China Life Sci ; 53(5): 533-41, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20596936

RESUMO

To treat tobacco addiction, a tea filter was developed and studied for smoking cessation. This work reports the smoking cessation effect of tea when it was used as a component of cigarette filters. In one trial it was found that after using the tea filters for 2 months, the volunteer smokers decreased their cigarette consumption by 56.5%, and 31.7% of them stopped smoking. This work identified a new method and material, tea filter and theanine, which inhibit tobacco and nicotine addiction and provide an effective strategy for treating tobacco addiction.


Assuntos
Abandono do Hábito de Fumar/métodos , Chá , Poluição por Fumaça de Tabaco/efeitos adversos , Adolescente , Adulto , Animais , Comportamento Animal , Estudos de Casos e Controles , Feminino , Filtração/instrumentação , Glutamatos/farmacologia , Humanos , Pneumopatias/prevenção & controle , Masculino , Camundongos , Nicotina/administração & dosagem , Tabagismo/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA