Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 39(3): 721-730, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900942

RESUMO

Unlike most other conventional petroleum products that are derived from crude oil, gas-to-liquids (GTLs) are petroleum products that are synthesized from natural gas (methane). This process results in GTL products having no sulfur and low aromatic content, so they should have less impact on human health and the environment compared with crude oil-derived products. The GTLs have been registered for use as nonaqueous base fluids (NABFs) in drilling muds, which aid in the process of drilling wells for oil and gas extraction; it is through these uses and others that they enter terrestrial environments. The primary objective of the present study was to determine whether GTLs were less toxic to terrestrial soil biota than conventional NABFs used for land-based drilling, such as diesel and low-toxicity mineral oil (LTMO). A second objective was to understand the fate and impact of these fluids under more realistic soil and aging conditions of a common west Texas (USA) oil-producing region (i.e., sandy loam soil with low organic matter and a hot arid climate). Acute terrestrial toxicity studies were conducted on the soft-bodied terrestrial invertebrate earthworm (Eisenia fetida) along with 3 plant species-alfalfa (Medicago stavia), thickspike wheatgrass (Elymus lanceolatus), and fourwing saltbrush (Atriplex canescens). We also assessed changes in microbial community structure of the soils following additions of NABF. Overall, the GTL NABFs had lower toxicity compared with conventional NABFs like diesel and LTMO, as measured by invertebrate toxicity, plant seed germination, and impact on the microbial community. Environ Toxicol Chem 2020;39:721-730. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Atriplex/efeitos dos fármacos , Elymus/efeitos dos fármacos , Medicago sativa/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Petróleo/efeitos adversos , Animais , Indústria de Petróleo e Gás , Microbiologia do Solo , Texas
2.
Sci Total Environ ; 444: 121-7, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23268140

RESUMO

The Deepwater Horizon accident in the Gulf of Mexico resulted in a sustained release of crude oil, and weathered oil was reported to have washed onto shorelines and marshes along the Gulf coast. One strategy to minimize effects of tarballs, slicks, and oil sheen, and subsequent risk to nearshore ecosystem resources was to use oil dispersants (primarily Corexit® 9500) at offshore surface and deepwater locations. Data have been generated reporting how Corexit® 9500 and other dispersants may alter the acute toxicity of crude oil (Louisiana sweet crude) to marine organisms. However, it remains unknown how oil dispersants may influence bioaccumulation of petroleum hydrocarbons in nearshore crustaceans. We compare bioaccumulation of petroleum hydrocarbons in fiddler crabs (Uca minax) from exposures to the water accommodated fraction (WAF) of weathered Mississippi Canyon 252 oil (~30 d post spill) and chemically-enhanced WAF when mixed with Corexit® EC9500A. Whole body total petroleum hydrocarbon (TPH) concentrations were greater than background for both treatments after 6h of exposure and reached steady state at 96 h. The modeled TPH uptake rate was greater for crabs in the oil only treatment (k(u)=2.51 mL/g/h vs. 0.76 mL/g/h). Furthermore, during the uptake phase TPH patterns in tissues varied between oil only and oil+dispersant treatments. Steady state bioaccumulation factors (BAFs) were 19.0 mL/g and 14.1 mL/g for the oil only and oil+Corexit treatments, respectively. These results suggest that the toxicokinetic mechanisms of oil may be dependent on oil dispersion (e.g., smaller droplet sizes). The results also indicate that multiple processes and functional roles of species should be considered for understanding how dispersants influence bioavailability of petroleum hydrocarbons.


Assuntos
Braquiúros/metabolismo , Hidrocarbonetos/farmacocinética , Petróleo/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Braquiúros/efeitos dos fármacos , Golfo do México , Hidrocarbonetos/toxicidade , Petróleo/toxicidade , Poluição por Petróleo , Poluentes Químicos da Água/toxicidade , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA