Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vitam Horm ; 100: 321-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26827958

RESUMO

Metastatic castration-resistant prostate cancer (mCRPC) is a progressive, noncurable disease induced by androgen receptor (AR) upon its activation by tumor tissue androgen, which is generated from adrenal steroid dehydroepiandrosterone (DHEA) through intracrine androgen biosynthesis. Inhibition of mCRPC and early-stage, androgen-dependent prostate cancer by calcitriol, the bioactive vitamin D3 metabolite, is amply documented in cell culture and animal studies. However, clinical trials of calcitriol or synthetic analogs are inconclusive, although encouraging results have recently emerged from pilot studies showing efficacy of a safe-dose vitamin D3 supplementation in reducing tumor tissue inflammation and progression of low-grade prostate cancer. Vitamin D-mediated inhibition of normal and malignant prostate cells is caused by diverse mechanisms including G1/S cell cycle arrest, apoptosis, prodifferentiation gene expression changes, and suppressed angiogenesis and cell migration. Biological effects of vitamin D are mediated by altered expression of a gene network regulated by the vitamin D receptor (VDR), which is a multidomain, ligand-inducible transcription factor similar to AR and other nuclear receptors. AR-VDR cross talk modulates androgen metabolism in prostate cancer cells. Androgen inhibits vitamin D-mediated induction of CYP24A1, the calcitriol-degrading enzyme, while vitamin D promotes androgen inactivation by inducing phase I monooxygenases (e.g., CYP3A4) and phase II transferases (e.g., SULT2B1b, a DHEA-sulfotransferase). CYP3A4 and SULT2B1b levels are markedly reduced and CYP24A1 is overexpressed in advanced prostate cancer. In future trials, combining low-calcemic, potent next-generation calcitriol analogs with CYP24A1 inhibition or androgen supplementation, or cancer stem cell suppression by a phytonutrient such as sulfarophane, may prove fruitful in prostate cancer prevention and treatment.


Assuntos
Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Vitamina D/metabolismo , Vitamina D/farmacologia , Humanos , Masculino , Receptores de Calcitriol/metabolismo
2.
J Cell Biochem ; 114(5): 1124-34, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23192945

RESUMO

The limited treatment option for recurrent prostate cancer and the eventual resistance to conventional chemotherapy drugs has fueled continued interest in finding new anti-neoplastic agents of natural product origin. We previously reported anti-proliferative activity of deoxypodophyllotoxin (DPT) on human prostate cancer cells. Using the PC-3 cell model of human prostate cancer, the present study reveals that DPT induced apoptosis via a caspase-3-dependent pathway that is activated due to dysregulated mitochondrial function. DPT-treated cells showed accumulation of the reactive oxygen species (ROS), intracellular Ca (i)(2+) surge, increased mitochondrial membrane potential (MMP, ΔΨ(m)), Bax protein translocation to mitochondria and cytochrome c release to the cytoplasm. This resulted in caspase-3 activation, which in turn induced apoptosis. The antioxidant N-acetylcysteine (NAC) reduced ROS accumulation, MMP and Ca (i)(2+) surge, on the other hand the Ca(2+) chelator BAPTA inhibited the Ca( i)(2+) overload and MMP without affecting the increase of ROS, indicating that the generation of ROS occurred prior to Ca(2+) flux. This suggested that both ROS and Ca( i)(2+) signaling play roles in the increased MMP via Ca (i)(2+)-dependent and/or -independent mechanisms, since ΔΨ(m) elevation was reversed by NAC and BAPTA. This study provides the first evidence for the involvement of both ROS- and Ca( i)(2+)-activated signals in the disruption of mitochondrial homeostasis and the precedence of ROS production over the failure of Ca(2+) flux homeostasis.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Homeostase/efeitos dos fármacos , Mitocôndrias/metabolismo , Podofilotoxina/análogos & derivados , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Medicamentos de Ervas Chinesas , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Podofilotoxina/química , Podofilotoxina/farmacologia , Neoplasias da Próstata/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA