Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Toxicol ; 92(4): 1507-1524, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29397400

RESUMO

Etoposide (ETP) and anthracyclines are applied for wide anti-cancer treatments. However, the ETP-induced cardiotoxicity remains to be a major safety issue and the underlying cardiotoxic mechanisms are not well understood. This study is aiming to unravel the cardiotoxicity profile of ETP in comparison to anthracyclines using physiologically relevant human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). Using xCELLigence real-time cell analyser (RTCA), we found that single high dose of ETP induces irreversible increase in hPSC-CMs beating rate and decrease in beating amplitude. We also identified 58 deregulated genes consisting of 33 upregulated and 25 downregulated genes in hPSC-CMs after ETP treatment. Gene ontology (GO) and pathway analysis showed that most upregulated genes are enriched in GO categories like positive regulation of apoptotic process, regulation of cell death, and mitochondria organization, whereas most downregulated genes were enriched in GO categories like cytoskeletal organization, muscle contraction, and Ca2+ ion homeostasis. Moreover, we also found upregulation in 5 miRNAs (has-miR-486-3p, has-miR-34c-5p, has-miR-4423-3p, has-miR-182-5p, and has-miR-139-5p) which play role in muscle contraction, arginine and proline metabolism, and hypertrophic cardiomyopathy (HCM). Immunostaining and transmission electron microscopy also confirmed the cytoskeletal and mitochondrial damage in hPSC-CMs treated with ETP, as well as noticeable alterations in intracellular calcium handling and mitochondrial membrane potential were also observed. The apoptosis inhibitor, Pifithrin-α, found to protect hPSC-CMs from ETP-induced cardiotoxicity, whereas hPSC-CMs treated with ferroptosis inhibitor, Liproxstatin-1, showed significant recovery in hPSC-CMs functional properties like beating rate and amplitude after ETP treatment. We suggest that the damage to mitochondria is a major contributing factor involved in ETP-induced cardiotoxicity and the activation of the p53-mediated ferroptosis pathway by ETP is likely the critical pathway in ETP-induced cardiotoxicity. We also conclude that the genomic biomarkers identified in this study will significantly contribute to develop and predict potential cardiotoxic effects of novel anti-cancer drugs in vitro.


Assuntos
Antraciclinas/toxicidade , Antineoplásicos/toxicidade , Etoposídeo/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Apoptose/genética , Benzotiazóis/farmacologia , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Morte Celular/genética , Células Cultivadas , Proteínas do Citoesqueleto/genética , Regulação para Baixo , Expressão Gênica , Humanos , MicroRNAs , Mitocôndrias Cardíacas/genética , Contração Muscular/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/citologia , Quinoxalinas/farmacologia , Compostos de Espiro/farmacologia , Tolueno/análogos & derivados , Tolueno/farmacologia , Regulação para Cima
2.
Arch Toxicol ; 90(12): 3087-3098, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26842497

RESUMO

An in depth investigation at the genomic level is needed to identify early human-relevant cardiotoxicity biomarkers that are induced by drugs and environmental toxicants. The main objective of this study was to investigate the role of microRNAs (miRNAs) as cardiotoxicity biomarkers using human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) that were exposed to doxorubicin (DOX) as a "gold standard" cardiotoxicant. hiPSC-CMs were exposed to 156 nM DOX for 2 days or for 6 days of repeated exposure, followed by drug washout and incubation in drug-free culture medium up to day 14 after the onset of exposure. The induced miRNAs were profiled using miRNA microarrays, and the analysis of the data was performed using the miRWalk 2.0 and DAVID bioinformatics tools. DOX induced early deregulation of 14 miRNAs (10 up-regulated and 4 down-regulated) and persistent up-regulation of 5 miRNAs during drug washout. Computational miRNA gene target predictions suggested that several DOX-responsive miRNAs might regulate the mRNA expression of genes involved in cardiac contractile function. The hiPSC-CMs exposed to DOX in a range from 39 to 156 nM did not show a significant release of the cytotoxicity marker lactate dehydrogenase (LDH) compared to controls. Quantitative real-time PCR analyses confirmed the early deregulation of miR-187-3p, miR-182-5p, miR-486-3p, miR-486-5p, miR-34a-3p, miR-4423-3p, miR-34c-3p, miR-34c-5p and miR-1303, and also the prolonged up-regulation of miR-182-5p, miR-4423-3p and miR-34c-5p. Thus, we identified and validated miRNAs showing differential DOX-responsive expression before the occurrence of cytotoxicity markers such as LDH, and these miRNAs also demonstrated the significant involvement in heart failure in patients and animal models. These results suggest that the DOX-induced deregulated miRNAs in human CMs may be used as early sensitive cardiotoxicity biomarkers for screening potential drugs and environmental cardiotoxicants with a similar mechanism of action.


Assuntos
Cardiotoxinas/toxicidade , Doxorrubicina/toxicidade , MicroRNAs/metabolismo , Modelos Químicos , Miócitos Cardíacos/efeitos dos fármacos , Biomarcadores/metabolismo , Biomarcadores Farmacológicos/metabolismo , Diferenciação Celular , Células Cultivadas , Biologia Computacional , Avaliação Pré-Clínica de Medicamentos , Drogas em Investigação/efeitos adversos , Monitoramento Ambiental , Poluentes Ambientais/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Cinética , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
3.
Arch Toxicol ; 90(11): 2763-2777, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26537877

RESUMO

The currently available techniques for the safety evaluation of candidate drugs are usually cost-intensive and time-consuming and are often insufficient to predict human relevant cardiotoxicity. The purpose of this study was to develop an in vitro repeated exposure toxicity methodology allowing the identification of predictive genomics biomarkers of functional relevance for drug-induced cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The hiPSC-CMs were incubated with 156 nM doxorubicin, which is a well-characterized cardiotoxicant, for 2 or 6 days followed by washout of the test compound and further incubation in compound-free culture medium until day 14 after the onset of exposure. An xCELLigence Real-Time Cell Analyser was used to monitor doxorubicin-induced cytotoxicity while also monitoring functional alterations of cardiomyocytes by counting of the beating frequency of cardiomyocytes. Unlike single exposure, repeated doxorubicin exposure resulted in long-term arrhythmic beating in hiPSC-CMs accompanied by significant cytotoxicity. Global gene expression changes were studied using microarrays and bioinformatics tools. Analysis of the transcriptomic data revealed early expression signatures of genes involved in formation of sarcomeric structures, regulation of ion homeostasis and induction of apoptosis. Eighty-four significantly deregulated genes related to cardiac functions, stress and apoptosis were validated using real-time PCR. The expression of the 84 genes was further studied by real-time PCR in hiPSC-CMs incubated with daunorubicin and mitoxantrone, further anthracycline family members that are also known to induce cardiotoxicity. A panel of 35 genes was deregulated by all three anthracycline family members and can therefore be expected to predict the cardiotoxicity of compounds acting by similar mechanisms as doxorubicin, daunorubicin or mitoxantrone. The identified gene panel can be applied in the safety assessment of novel drug candidates as well as available therapeutics to identify compounds that may cause cardiotoxicity.


Assuntos
Antraciclinas/efeitos adversos , Cardiotoxinas/efeitos adversos , Drogas em Investigação/efeitos adversos , Miócitos Cardíacos/efeitos dos fármacos , Antibióticos Antineoplásicos/efeitos adversos , Biomarcadores Farmacológicos/metabolismo , Células Cultivadas , Biologia Computacional , Daunorrubicina/efeitos adversos , Doxorrubicina/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mitoxantrona/efeitos adversos , Anotação de Sequência Molecular , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidores da Topoisomerase II/efeitos adversos , Testes de Toxicidade Crônica
4.
Stem Cells Dev ; 23(1): 44-55, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23952781

RESUMO

Human skin-derived precursors (hSKP) are postnatal stem cells with neural crest properties that reside in the dermis of human skin. These cells can be easily isolated from small (fore) skin segments and have the capacity to differentiate into multiple cell types. In this study, we show that upon exposure to hepatogenic growth factors and cytokines, hSKP acquire sufficient hepatic features that could make these cells suitable in vitro tools for hepatotoxicity screening of new chemical entities and already existing pharmaceutical compounds. Indeed, hepatic differentiated hSKP [hSKP-derived hepatic progenitor cells (hSKP-HPC)] express hepatic progenitor cell markers (EPCAM, NCAM2, PROM1) and adult hepatocyte markers (ALB), as well as key biotransformation enzymes (CYP1B1, FMO1, GSTA4, GSTM3) and influx and efflux drug transporters (ABCC4, ABCA1, SLC2A5). Using a toxicogenomics approach, we could demonstrate that hSKP-HPC respond to acetaminophen exposure in a comparable way to primary human hepatocytes in culture. The toxicological responses "liver damage", "liver proliferation", "liver necrosis" and "liver steatosis" were found to be significantly enriched in both in vitro models. Also genes associated with either cytotoxic responses or induction of apoptosis (BCL2L11, FOS, HMOX1, TIMP3, and AHR) were commonly upregulated and might represent future molecular biomarkers for hepatotoxicity. In conclusion, our data gives a first indication that hSKP-HPC might represent a suitable preclinical model for in vitro screening of hepatotoxicity. To the best of our knowledge, this is the first report in which human postnatal stem cells derived from skin are described as a potentially relevant cell source for in vitro hepatotoxicity testing of pharmaceutical compounds.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/efeitos dos fármacos , Pele/citologia , Células-Tronco/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/farmacologia , Fator de Crescimento de Hepatócito/farmacologia , Hepatócitos/citologia , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/lesões , Crista Neural/citologia , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA