Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 207: 108396, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310727

RESUMO

Drought stress poses a substantial threat to global plant productivity amid increasing population and rising agricultural demand. To overcome this problem, the utilization of organic plant growth ingredients aligns with the emphasis on eco-friendly farming practices. Therefore, the present study aimed to assess the influence of 30 botanical extracts on seed germination, seedling vigor, and subsequent maize plant growth under normal and water deficit conditions. Specifically, eight extracts showed significant enhancement in agronomical parameters (ranging from ∼2 % to ∼ 183 %) and photosynthetic pigments (ranging from ∼21 % to âˆ¼ 195 %) of seedlings under drought conditions. Extended tests on maize in a greenhouse setting confirmed that the application of six extracts viz Moringa oleifera leaf (MLE), bark (MBE), Terminalia arjuna leaf (ALE), bark (ABE), Aegel marmelos leaf (BLE), and Phyllanthus niruri leaf (AmLE) improved plant growth and drought tolerance, as evident in improved physio-biochemical parameters. GC-MS analysis of the selected extracts unveiled a total of 51 bioactive compounds, including sugars, sugar alcohols, organic acids, and amino acids, and might be playing pivotal roles in plant acclimatization to drought stress. In conclusion, MLE, MBE, BLE, and ABE extracts exhibit significant potential for enhancing seedling establishment and growth in maize under both normal and water deficit conditions.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Zea mays/metabolismo , Secas , Plântula/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Água/metabolismo , Estresse Fisiológico
2.
Geroscience ; 43(2): 791-807, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32725551

RESUMO

Terpenes and their derivatives have been used conventionally as potential dietary supplements to boost the nutritional value of endless food products. Several plant-based complex terpenoid and their derivatives have been reported for a wide range of medicinal and nutritional properties. However, their simple counterparts, whose production is relatively easy, sustainable, and economic from food-grade microbial sources, have not been studied yet for any such biological activities. The present study aimed to investigate the longevity-promoting property and neuromodulatory effects of 3,3-dimethylallyl alcohol (Prenol), one of the simplest forms of terpenoid and a constituent of fruit aroma, in the animal model Caenorhabditis elegans. Prenol supplementation (0.25 mM) augmented the lifespan of wild-type nematodes by 22.8% over the non-treated worms. Moreover, a suspended amyloid-ß induced paralysis and reduced α-synuclein aggregation were observed in Prenol-treated worms. The lifespan extending properties of Prenol were correlated with ameliorated physiological parameters and increased stress (heat and oxidative) tolerance in C. elegans. In silico and gene-specific mutant studies showed that pro-longevity transcription factors DAF-16, HSF-1, and SKN-1 were involved in the improved lifespan and health-span of Prenol-treated worms. Transgenic green fluorescent protein-reporter gene expression analysis and relative mRNA quantification (using real-time PCR) demonstrated an increase in the expression of DAF-16, HSF-1, and SKN-1 transcription factors and their downstream target genes in Prenol-treated worms. Together, the findings suggest that small molecules, like Prenol, could be explored as a potential alternate to develop therapeutics against aging and age-related ailments.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Hemiterpenos , Longevidade , Neuroproteção , Estresse Oxidativo , Espécies Reativas de Oxigênio
3.
J Hazard Mater ; 390: 122122, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006842

RESUMO

Arsenic (As), a chronic poison and non-threshold carcinogen, is a food chain contaminant in rice, posing yield losses as well as serious health risks. Selenium (Se), a trace element, is a known antagonist of As toxicity. In present study, RNA seq. and proteome profiling, along with morphological analyses were performed to explore molecular cross-talk involved in Se mediated As stress amelioration. The repair of As induced structural deformities involving disintegration of cell wall and membranes were observed upon Se supplementation. The expression of As transporter genes viz., NIP1;1, NIP2;1, ABCG5, NRAMP1, NRAMP5, TIP2;2 as well as sulfate transporters, SULTR3;1 and SULTR3;6, were higher in As + Se compared to As alone exposure, which resulted in reduced As accumulation and toxicity. The higher expression of regulatory elements like AUX/IAA, WRKY and MYB TFs during As + Se exposure was also observed. The up-regulation of GST, PRX and GRX during As + Se exposure confirmed the amelioration of As induced oxidative stress. The abundance of proteins involved in photosynthesis, energy metabolism, transport, signaling and ROS homeostasis were found higher in As + Se than in As alone exposure. Overall, present study identified Se responsive pathways, genes and proteins involved to cope-up with As toxicity in rice.


Assuntos
Arsênio/toxicidade , Oryza/efeitos dos fármacos , Selênio/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/efeitos dos fármacos , RNA-Seq , Transcriptoma/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-31669661

RESUMO

Betula utilis (BU), an important medicinal plant that grows in high altitudes of the Himalayan region, has been utilized traditionally due to it's antibacterial, hepatoprotective, and anti-tumor properties. Here, we demonstrated the longevity and amyloid-ß toxicity attenuating activity of B. utilis ethanolic extract (BUE) in Caenorhabditis elegans. Lifespan of the worms was observed under both the standard laboratory and stress (oxidative and thermal) conditions. Effect of BUE was also observed on the attenuation of age-dependent physiological parameters. Further, gene-specific mutants and green fluorescent protein (GFP)-tagged strains were used to investigate the molecular mechanism underlying the beneficial effects mediated by BUE supplementation. Our results showed that BUE (50 µg/ml) extended the mean lifespan of C. elegans by 35.99% and increased its survival under stress conditions. The BUE also reduced the levels of intracellular reactive oxygen species (ROS) by 22.47%. A delayed amyloid-ß induced paralyses was observed in CL4176 transgenic worms. Interestingly, the BUE supplementation was also able to reduce the α-synuclein aggregation in NL5901 transgenic strain. Gene-specific mutant studies suggested that the BUE-mediated lifespan extension was dependent on daf-16, hsf-1, and skn-1 but not on sir-2.1 gene. Furthermore, transgenic reporter gene expression assay showed that BUE treatment enhanced the expression of stress-protective genes such as sod-3 and gst-4. Present findings suggested that ROS scavenging activity, together with multiple longevity mechanisms, were involved in BUE-mediated lifespan extension. Thus, BUE might have potential to increase the lifespan and to attenuate neuro-related disease progression.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Antioxidantes/farmacologia , Betula/química , Caenorhabditis elegans/efeitos dos fármacos , Longevidade , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Peptídeos beta-Amiloides/toxicidade , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , alfa-Sinucleína/metabolismo
5.
J Ethnopharmacol ; 114(3): 446-51, 2007 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-17913417

RESUMO

This study represents a comprehensive analysis and scientific validation of our ancient knowledge about the effect of ethnopharmacological aspects of natural products' smoke for therapy and health care on airborne bacterial composition and dynamics, using the Biolog microplate panels and Microlog database. We have observed that 1h treatment of medicinal smoke emanated by burning wood and a mixture of odoriferous and medicinal herbs (havan sámagri=material used in oblation to fire all over India), on aerial bacterial population caused over 94% reduction of bacterial counts by 60 min and the ability of the smoke to purify or disinfect the air and to make the environment cleaner was maintained up to 24h in the closed room. Absence of pathogenic bacteria Corynebacterium urealyticum, Curtobacterium flaccumfaciens, Enterobacter aerogenes (Klebsiella mobilis), Kocuria rosea, Pseudomonas syringae pv. persicae, Staphylococcus lentus, and Xanthomonas campestris pv. tardicrescens in the open room even after 30 days is indicative of the bactericidal potential of the medicinal smoke treatment. We have demonstrated that using medicinal smoke it is possible to completely eliminate diverse plant and human pathogenic bacteria of the air within confined space.


Assuntos
Microbiologia do Ar , Bactérias/efeitos dos fármacos , Plantas Medicinais , Fumaça , Etnofarmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA