Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 296(4): 863-876, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33899140

RESUMO

Picrorhiza kurroa is a medicinal herb with diverse pharmacological applications due to the presence of iridoid glycosides, picroside-I (P-I), and picroside-II (P-II), among others. Any genetic improvement in this medicinal herb can only be undertaken if the biosynthetic pathway genes are correctly identified. Our previous studies have deciphered biosynthetic pathways for P-I and P-II, however, the occurrence of multiple copies of genes has been a stumbling block in their usage. Therefore, a methodological strategy was designed to identify and prioritize paralogues of pathway genes associated with contents of P-I and P-II. We used differential transcriptomes varying for P-I and P-II contents in different tissues of P. kurroa. All transcripts for a particular pathway gene were identified, clustered based on multiple sequence alignment to notify as a representative of the same gene (≥ 99% sequence identity) or a paralogue of the same gene. Further, individual paralogues were tested for their expression level via qRT-PCR in tissue-specific manner. In total 44 paralogues in 14 key genes have been identified out of which 19 gene paralogues showed the highest expression pattern via qRT-PCR. Overall analysis shortlisted 6 gene paralogues, PKHMGR3, PKPAL2, PKDXPS1, PK4CL2, PKG10H2 and PKIS2 that might be playing role in the biosynthesis of P-I and P-II, however, their functional analysis need to be further validated either through gene silencing or over-expression. The usefulness of this approach can be expanded to other non-model plant species for which transcriptome resources have been generated.


Assuntos
Glicosídeos Iridoides/metabolismo , Picrorhiza , Plantas Medicinais , Vias Biossintéticas/genética , Cinamatos/metabolismo , Cinamatos/farmacologia , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/fisiologia , Genes de Plantas , Ensaios de Triagem em Larga Escala , Glucosídeos Iridoides/metabolismo , Glucosídeos Iridoides/farmacologia , Glicosídeos Iridoides/farmacologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Picrorhiza/química , Picrorhiza/genética , Picrorhiza/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Medicinais/química , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Homologia de Sequência , Transcriptoma/fisiologia
2.
Mol Biol Rep ; 45(2): 77-98, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29349608

RESUMO

Swertia chirayita is a high-value medicinal herb exhibiting antidiabetic, hepatoprotective, anticancer, antiediematogenic and antipyretic properties. Scarcity of its plant material has necessitated in vitro production of therapeutic metabolites; however, their yields were low compared to field grown plants. Possible reasons for this could be differences in physiological and biochemical processes between plants grown in photoautotrophic versus photoheterotrophic modes of nutrition. Comparative transcriptomes of S. chirayita were generated to decipher the crucial molecular components associated with the secondary metabolites biosynthesis. Illumina HiSeq sequencing yielded 57,460 and 43,702 transcripts for green house grown (SCFG) and tissue cultured (SCTC) plants, respectively. Biological role analysis (GO and COG assignments) revealed major differences in SCFG and SCTC transcriptomes. KEGG orthology mapped 351 and 341 transcripts onto secondary metabolites biosynthesis pathways for SCFG and SCTC transcriptomes, respectively. Nineteen out of 30 genes from primary metabolism showed higher in silico expression (FPKM) in SCFG versus SCTC, possibly indicating their involvement in regulating the central carbon pool. In silico data were validated by RT-qPCR using a set of 16 genes, wherein 10 genes showed similar expression pattern across both the methods. Comparative transcriptomes identified differentially expressed transcription factors and ABC-type transporters putatively associated with secondary metabolism in S. chirayita. Additionally, functional classification was performed using NCBI Biosystems database. This study identified the molecular components implicated in differential modes of nutrition (photoautotrophic vs. photoheterotrophic) in relation to secondary metabolites production in S. chirayita.


Assuntos
Perfilação da Expressão Gênica/métodos , Swertia/genética , Swertia/metabolismo , Processos Autotróficos/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Processos Fototróficos/fisiologia , Extratos Vegetais , Plantas Medicinais/genética , Metabolismo Secundário/fisiologia , Swertia/fisiologia , Transcriptoma/genética
3.
Front Plant Sci ; 8: 564, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443130

RESUMO

Picroside-II (P-II), an iridoid glycoside, is used as an active ingredient of various commercial herbal formulations available for the treatment of liver ailments. Despite this, the knowledge of P-II biosynthesis remains scarce owing to its negligence in Picrorhiza kurroa shoots which sets constant barrier for function validation experiments. In this study, we utilized natural variation for P-II content in stolon tissues of different P. kurroa accessions and deciphered its metabolic route by integrating metabolomics of intermediates with differential NGS transcriptomes. Upon navigating through high vs. low P-II content accessions (1.3-2.6%), we have established that P-II is biosynthesized via degradation of ferulic acid (FA) to produce vanillic acid (VA) which acts as its immediate biosynthetic precursor. Moreover, the FA treatment in vitro at 150 µM concentration provided further confirmation with 2-fold rise in VA content. Interestingly, the cross-talk between different compartments of P. kurroa, i.e., shoots and stolons, resolved spatial complexity of P-II biosynthesis and consequently speculated the burgeoning necessity to bridge gap between VA and P-II production in P. kurroa shoots. This work thus, offers a forward looking strategy to produce both P-I and P-II in shoot cultures, a step toward providing a sustainable production platform for these medicinal compounds via-à-vis relieving pressure from natural habitat of P. kurroa.

4.
Mol Biol Rep ; 43(12): 1395-1409, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27633652

RESUMO

Transcriptional regulation of picrosides biosynthesis, the iridoid glycosides of an endangered medicinal herb, Picrorhiza kurroa, is completely unknown. P. kurroa plants obtained from natural habitat accumulate higher picrosides than in-vitro cultured plants, which necessitates identification of transcription factors (TFs) regulating their differential biosynthesis. The current study investigates complete spectrum of different TF classes in P. kurroa transcriptomes and discerns their association with picrosides biosynthesis. Transcriptomes of differential picroside-I content shoots and picroside-II content roots were mined for seven classes of TFs implicated in secondary metabolism regulation in plants. Key TFs were identified through in silico transcript abundance and qPCR analysis was performed to confirm transcript levels of TFs under study in differential content tissues and genotypes. Promoter regions of key picrosides biosynthetic pathway genes were explored to hypothesize which TFs can possibly regulate target genes. A total of 131, 137, 107, 82 and 101 transcripts encoding different TFs families were identified in PKS-25, PKS-15, PKSS, PKR-25 and PKSR transcriptomes, respectively. ERF-18, bHLH-104, NAC-25, 32, 94 and SUF-4 showed elevated expression in roots (up to 37 folds) and shoots (up to 195 folds) of plants obtained from natural habitat, indicating their role as activators of picrosides biosynthesis whereas, elevated expression of WRKY-17, 40, 71 and MYB-4 in low picrosides content conditions suggested their down-regulatory role. In silico analysis of key picrosides biosynthetic pathway gene promoter regions revealed binding domains for ERF-18, NAC-25, WRKY-40 and MYB-4. Identification of candidate TFs contributing towards picrosides biosynthesis is a pre-requisite for designing appropriate metabolic engineering strategies aimed at enhancing picrosides content in vitro and in vivo.


Assuntos
Cinamatos/metabolismo , Glucosídeos Iridoides/metabolismo , Picrorhiza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vias Biossintéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Picrorhiza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Transcriptoma
5.
PLoS One ; 10(12): e0144546, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26658062

RESUMO

Picrorhiza kurroa is an important medicinal herb valued for iridoid glycosides, Picroside-I (P-I) and Picroside-II (P-II), which have several pharmacological activities. Genetic interventions for developing a picroside production platform would require knowledge on biosynthetic pathway and key control points, which does not exist as of today. The current study reports that geranyl pyrophosphate (GPP) moiety is mainly contributed by the non-mevalonate (MEP) route, which is further modified to P-I and P-II through phenylpropanoid and iridoid pathways, in total consisting of 41 and 35 enzymatic steps, respectively. The role of the MEP pathway was ascertained through enzyme inhibitors fosmidomycin and mevinolin along with importance of other integrating pathways using glyphosate, aminooxy acetic acid (AOA) and actinomycin D, which overall resulted in 17%-92% inhibition of P-I accumulation. Retrieval of gene sequences for enzymatic steps from NGS transcriptomes and their expression analysis vis-à-vis picrosides content in different tissues/organs showed elevated transcripts for twenty genes, which were further shortlisted to seven key genes, ISPD, DXPS, ISPE, PMK, 2HFD, EPSPS and SK, on the basis of expression analysis between high versus low picrosides content strains of P. kurroa so as to eliminate tissue type/ developmental variations in picrosides contents. The higher expression of the majority of the MEP pathway genes (ISPD, DXPS and ISPE), coupled with higher inhibition of DXPR enzyme by fosmidomycin, suggested that the MEP route contributed to the biosynthesis of P-I in P. kurroa. The outcome of the study is expected to be useful in designing a suitable genetic intervention strategy towards enhanced production of picrosides. Possible key genes contributing to picroside biosynthesis have been identified with potential implications in molecular breeding and metabolic engineering of P. kurroa.


Assuntos
Cinamatos/metabolismo , Inibidores Enzimáticos/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Glucosídeos Iridoides/metabolismo , Picrorhiza/genética , Transcriptoma/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Dactinomicina/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Picrorhiza/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
6.
Phytochemistry ; 116: 38-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26028519

RESUMO

Swertia chirayita, an endangered medicinal herb, contains three major secondary metabolites swertiamarin, amarogentin and mangiferin, exhibiting valuable therapeutic traits. No information exists as of today on the biosynthesis of these metabolites in S. chirayita. The current study reports the expression profiling of swertiamarin, amarogentin and mangiferin biosynthesis pathway genes and their correlation with the respective metabolites content in different tissues of S. chirayita. Root tissues of greenhouse grown plants contained the maximum amount of secoiridoids (swertiamarin, 2.8% of fr. wt and amarogentin, 0.1% of fr. wt), whereas maximum accumulation of mangiferin (1.0% of fr. wt) was observed in floral organs. Differential gene expression analysis and their subsequent principal component analysis unveiled ten genes (encoding HMGR, PMK, MVK, ISPD, ISPE, GES, G10H, 8HGO, IS and 7DLGT) of the secoiridoids biosynthesis pathway and five genes (encoding EPSPS, PAL, ADT, CM and CS) of mangiferin biosynthesis with elevated transcript amounts in relation to corresponding metabolite contents. Three genes of the secoiridoids biosynthesis pathway (encoding PMK, ISPD and IS) showed elevated levels (∼57-104 fold increase in roots), and EPSPS of mangiferin biosynthesis showed an about 117 fold increase in transcripts in leaf tissues of the greenhouse grown plants. The study does provide leads on potential candidate genes correlating with the metabolites biosynthesis in S. chirayita as an initiative towards its genetic improvement.


Assuntos
Plantas Medicinais/química , Swertia/química , Swertia/genética , Glucosídeos Iridoides/análise , Glucosídeos Iridoides/química , Glucosídeos Iridoides/farmacologia , Iridoides/análise , Iridoides/química , Iridoides/farmacologia , Raízes de Plantas/química , Plantas Medicinais/genética , Pironas/análise , Pironas/química , Pironas/farmacologia , Xantonas/análise , Xantonas/química , Xantonas/farmacologia
7.
PLoS One ; 8(1): e52797, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326358

RESUMO

Rhodiola imbricata Edgew. (Rose root or Arctic root or Golden root or Shrolo), belonging to the family Crassulaceae, is an important food crop and medicinal plant in the Indian trans-Himalayan cold desert. Chemometric profile of the n-hexane, chloroform, dichloroethane, ethyl acetate, methanol, and 60% ethanol root extracts of R. imbricata were performed by hyphenated gas chromatography mass spectrometry (GC/MS) technique. GC/MS analysis was carried out using Thermo Finnigan PolarisQ Ion Trap GC/MS MS system comprising of an AS2000 liquid autosampler. Interpretation on mass spectrum of GC/MS was done using the NIST/EPA/NIH Mass Spectral Database, with NIST MS search program v.2.0g. Chemometric profile of root extracts revealed the presence of 63 phyto-chemotypes, among them, 1-pentacosanol; stigmast-5-en-3-ol, (3ß,24S); 1-teracosanol; 1-henteracontanol; 17-pentatriacontene; 13-tetradecen-1-ol acetate; methyl tri-butyl ammonium chloride; bis(2-ethylhexyl) phthalate; 7,8-dimethylbenzocyclooctene; ethyl linoleate; 3-methoxy-5-methylphenol; hexadecanoic acid; camphor; 1,3-dimethoxybenzene; thujone; 1,3-benzenediol, 5-pentadecyl; benzenemethanol, 3-hydroxy, 5-methoxy; cholest-4-ene-3,6-dione; dodecanoic acid, 3-hydroxy; octadecane, 1-chloro; ethanone, 1-(4-hydroxyphenyl); α-tocopherol; ascaridole; campesterol; 1-dotriacontane; heptadecane, 9-hexyl were found to be present in major amount. Eventually, in the present study we have found phytosterols, terpenoids, fatty acids, fatty acid esters, alkyl halides, phenols, alcohols, ethers, alkanes, and alkenes as the major group of phyto-chemotypes in the different root extracts of R. imbricata. All these compounds identified by GC/MS analysis were further investigated for their biological activities and it was found that they possess a diverse range of positive pharmacological actions. In future, isolation of individual phyto-chemotypes and subjecting them to biological activity will definitely prove fruitful results in designing a novel drug.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Extratos Vegetais/química , Raízes de Plantas/química , Rhodiola/química , Acetatos/química , Clorofórmio/química , Etanol/química , Dicloretos de Etileno/química , Hexanos/química , Metanol/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/classificação , Fitoterapia , Plantas Medicinais/química
8.
Fitoterapia ; 83(6): 1131-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22561081

RESUMO

In light of the economic importance of buckwheat as well as existence of enormous accessions of Fagopyrum species in the Himalayan regions of India, the characterization of tartary buckwheat for rutin content variation vis-à-vis DNA fingerprinting was undertaken so as to identify fingerprint profiles unique to high rutin content accessions. Rutin content analysis in mature seeds of 195 accessions of Fagopyrum tataricum showed a wide range of variation (6 µg/mg to 30 µg/mg D.W.) with most of the accessions (81%) containing 10-16 µg/mg of rutin followed by 14% accessions with significantly higher rutin content (17 µg/mg to 30 µg/mg) and 5% accessions with low rutin content (≤10 µg/mg). AFLP fingerprinting of 18 accessions having high (≥17 µg/mg) and low rutin content (≤10 µg/mg) with 19 EcoRI/MseI primer combinations yielded 136 polymorphic fragments out of total 907. The hierarchical and model-based cluster analyses of AFLP data strongly suggested that the 18 populations of F. tataricum were clustered into two separate groups. The high and low rutin content accessions were clustered into two separate groups based on AFLP fingerprinting. The AFLP fingerprints associated with high rutin content accessions of F. tataricum are expected to be useful for evaluation, conservation and genetic improvement of buckwheat.


Assuntos
Fagopyrum/genética , Polimorfismo Genético , Rutina/genética , Sementes/química , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Análise por Conglomerados , Impressões Digitais de DNA/métodos , Primers do DNA , Índia , Rutina/análise
9.
J Plant Physiol ; 168(17): 2117-23, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21872967

RESUMO

Buckwheat is one of the field crops with the highest concentration of rutin, an important flavonoid of medicinal value. Two species of buckwheat, Fagopyrum esculentum and Fagopyrum tataricum, are the major sources of rutin. Seeds of latter contain 40-50× higher rutin compared to the former. The physiological and molecular bases of rutin content variation between Fagopyrum species are not known. The current study investigated the differences in rutin content in seeds and in other tissues and growth stages of two Fagopyrum species, and also correlated those differences with the expression of flavonoid pathway genes. The analysis of rutin content dynamics at different growth stages, S1-S9 (from seed germination to mature seed formation) of Fagopyrum species revealed that rutin content was higher during seedling stages of F. tataricum (3.5 to 4.6-fold) compared to F. esculentum and then increased exponentially from stages S3 to S6 (different leaf maturing stages and inflorescence) of F. esculentum, whereas it fluctuated in F. tataricum. The rutin content was highest in the inflorescence stage (S6) of both species, with a relatively higher biosynthesis and accumulation during post-flowering stages of F. tataricum compared to F. esculentum. The expression of flavonoid pathway genes, through qRT-PCR, in different growth stages vis-à-vis rutin content variation showed differential expression for four genes, PAL, CHS, CHI and FLS with the amounts of transcripts relatively higher in F. tataricum compared to F. esculentum, thereby, correlating these genes with the biosynthesis and accumulation of rutin. The expression of PAL was highest, 7.69 and 8.96-fold in Stages 2 (seedling stage) and 9 (fully developed seeds) of F. tataricum compared to F. esculentum, respectively. The expression of the CHS gene correlated with the rutin content because it was highest in the flowers (S6) and fully developed seeds (S9) of both Fagopyrum species, with relatively higher transcript amounts (2.13 and 3.19-fold, respectively) in F. tataricum (IC-329457) compared to F. esculentum (IC-540858). This study provides useful information on molecular and physiological dynamics of rutin biosynthesis and accumulation in Fagopyrum species and the correlation of expression of flavonoid biosynthesis genes with the rutin content can be useful in planning for genetic improvement.


Assuntos
Fagopyrum/química , Fagopyrum/genética , Regulação da Expressão Gênica de Plantas/genética , Rutina/biossíntese , Cromatografia Líquida de Alta Pressão , DNA de Plantas/genética , Fagopyrum/crescimento & desenvolvimento , Flores/química , Flores/genética , Genes de Plantas/genética , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Rutina/análise , Rutina/genética , Plântula/química , Plântula/genética , Sementes/química , Sementes/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA