Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141276, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280652

RESUMO

Microbes may induce endogenous phosphorus (P) migration from lacustrine sediment. This study focused on the role of phosphate-solubilizing bacteria (PSB) disturbance in affecting the sediment P release and further contributing to cyanobacterial recruitment in Meiliang Bay, Lake Taihu. Gluconic acid was the main mechanism of phosphate solubilizing by PSB. The dominant PSB (Burkholderia) isolated from eutrophic lake sediments was used as a representative to investigate the effects of disturbance on endogenous P release using diffusive gradients in thin films (DGT) and high-resolution dialysis (HR-Peeper). The results show that soluble reactive phosphorus (SRP) and iron (Fe (II)) concentrations could reach 0.51 mg L-1 and 33.56 mg L-1 in pore water, respectively. And the sediment DGT-P and DGT-Fe were relatively reduced by PSB. Subsequent the chlorophyll a (Chl a) concentrations reached peaks of 344.8 µg L-1 in overlying water. The abundance of the dominant PSB (Burkholderia-Caballeronia-Paraburkholderia) were significantly associated with Chl a (P < 0.05) and algal effective state phosphorus (AAP) (P < 0.05), respectively. PSB mainly regulates AAP leaching to pore water and then diffusing across the sediment-water interface to the overlying water, producing the effect of cyanobacteria recruitment. The results provide new insights into early management of cyanobacterial resuscitation in a large eutrophic lake.


Assuntos
Cianobactérias , Poluentes Químicos da Água , Fosfatos , Lagos , Clorofila A , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Diálise Renal , Fósforo/análise , Água , China
2.
Cell Biol Toxicol ; 39(5): 2033-2050, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35038059

RESUMO

Multiple myeloma (MM) is a pernicious plasma cell disorder and has a poor prognosis. N6-methyladenosine (m6A) is an abundant epigenetic RNA modification and is important in cancer progression. Nevertheless, the function of m6A and its regulator METTL3 in MM are rarely reported. Here, we identified the m6A "writers", METTL3, was enhanced in MM and found that Yin Yang 1 (YY1) and primary-miR-27a-3p were the potential target for METTL3. METTL3 promoted primary-miR-27a-3p maturation and YY1 mRNA stability in an m6A manner. YY1 also was found to facilitate miR-27a-3p transcription. METTL3 affected the growth, apoptosis, and stemness of MM cells through accelerating the stability of YY1 mRNA and the maturation of primary-miR-27a-3p in vitro and in vivo. Our results reveal the key function of the METTL3/YY1/miR-27a-3p axis in MM and may provide fresh insights into MM therapy.


Assuntos
Metiltransferases , MicroRNAs , Mieloma Múltiplo , Fator de Transcrição YY1 , Humanos , Carcinogênese , Transformação Celular Neoplásica , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , Mieloma Múltiplo/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
3.
Chemosphere ; 313: 137315, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36410519

RESUMO

Attapulgite co-modified by lanthanum-iron (MT-LHMT) was used to study its effectiveness and mechanism in controlling phosphorus release from sediments. MT-LHMT has high adsorption capacity for phosphate and the maximum adsorption capacity of MT-LHMT to phosphate can reach 75.79 mg/g. The mechanism mainly involved electrostatic action, surface precipitation and ligand exchange between MT-LHMT bonded hydroxyl and phosphate to form La-O-P and Fe-O-P inner-sphere complexes. MT-LHMT has excellent adsorption performance in the pH range of 3-8. In addition to HCO3-, CO32- and HA- had a negative effect on the phosphorus removal of MT-LHMT, while NO3-, Cl-, SO42-, K+, Ca2+ and Mg2+ had a positive or no effect on phosphorus removal. MT-LHMT significantly reduced the risk of phosphorus release from overlying water in different dose effects and covering methods, as well as the unstable inactivation of flowing phosphorus, sediment dissolved reactive phosphorus (DRP) and available phosphorus with medium diffusion gradient in thin film in the sediment-water interface (Labile-PDGT). The MT-LHMT capping wrapped with fabric can reduce the risk of nitrogen release from sediment to overlying water more than only MT-LHMT capping. The results of this study showed that the MT-LHMT capping wrapped with fabric has high potential and can be used as an active capping material to manage the nitrogen and phosphorus load in surface water.


Assuntos
Fósforo , Poluentes Químicos da Água , Fósforo/química , Ferro/química , Lantânio/química , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Fosfatos , Nitrogênio , Lagos
4.
Chemosphere ; 307(Pt 1): 135777, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35870615

RESUMO

The release of endogenous phosphorus from lacustrine sediment is a key element of freshwater eutrophication. The microbes in sediments may affect phosphorus migration and transformation during the growth of cyanobacteria, which may lead to the release of phosphorus from sediments and contribute to water eutrophication. To study phosphorus sorption and the microbial community structure in the overlying water and the vertical depth of sediments, samples in Meiliang Bay were collected during the dormancy and resuscitation phases of cyanobacteria. The results showed that there were high total phosphorus (TP) concentrations in the overlying water and sediment, with maximum values reached 0.24 mg L-1 and 1059 mg kg-1, respectively. Fitting by modified Langmuir model indicated that the partitioning coefficients (KP) was, from greatest to least: bottom sediment (maximum of 0.923 L g-1) > middle sediment (0.571 L g-1) > surface sediment (0.262 L g-1). During the cyanobacteria resuscitation stage, the relative abundance of Proteobacteria (18.37%-33.56%), Chloroflexi (9.57%-17.76%), Cyanobacteria (0.38%-2.62%), and the Nitrospirota phylum Thermodesulfovibrionia (4.61%-10.14%) were higher than the dormant period of cyanobacteria, and bacteria with phosphorus-solubilizing (27.27%-52.01%) accounted for the majority. The redundancy analysis (RDA) found that the structure of the microbial communities in sediments was significant correlation with organic phosphorus (OP) (P = 0.002) during recruitment period of cyanobacteria, which would accelerate the conversion of OP into soluble inorganic phosphorus and then gets released from sediment to water. The most predominant phylum among phosphorus-solubilizing bacteria (PSB) is Proteobacteria, followed by Actinobacteriota, which were positively correlated with equilibrium phosphorus concentration (EPC0) (P < 0.05) during the cyanobacterial resuscitation phase. The sediments from the cyanobacteria resuscitation phase had phosphorus release risk and highlighted the significant role of the bacterial community.


Assuntos
Cianobactérias , Microbiota , Poluentes Químicos da Água , China , Eutrofização , Sedimentos Geológicos/química , Lagos/química , Fósforo/análise , Água/análise , Poluentes Químicos da Água/análise
5.
J Environ Sci (China) ; 66: 41-49, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628107

RESUMO

The arsenate (As(V)) biotransformation by Microcystis aeruginosa in a medium with different concentrations of nitrogen (N) and phosphorus (P) has been studied under laboratory conditions. When 15µg/L As(V) was added, N and P in the medium showed effective regulation on arsenic (As) metabolism in M. aeruginosa, resulting in significant differences in the algal growth among different N and P treatments. Under 0.2mg/L P treatment, increases in N concentration (4-20mg/L) significantly stimulated the cell growth and therefore indirectly enhanced the production of dimethylarsinic acid (DMA), the main As metabolite, accounting for 71%-79% of the total As in the medium. Meanwhile, 10-20mg/L N treatments accelerated the ability of As metabolization by M. aeruginosa, leading to higher contents of DMA per cell. However, As(V) uptake by M. aeruginosa was significantly impeded by 0.5-1.0mg/L P treatment, resulting in smaller rates of As transformation in M. aeruginosa as well as lower contents of As metabolites in the medium. Our data demonstrated that As(V) transformation by M. aeruginosa was significantly accelerated by increasing N levels, while it was inhibited by increasing P levels. Overall, both P and N play key roles in As(V) biotransformation processes.


Assuntos
Arseniatos/metabolismo , Biotransformação , Microcystis/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Fósforo/química , Fósforo/metabolismo , Poluentes Químicos da Água
6.
Huan Jing Ke Xue ; 37(9): 3340-3347, 2016 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964767

RESUMO

A detailed field survey of arsenic species and water quality parameters was conducted in different eutrophicated regions of Lake Taihu (Zhushan Bay, Meiliang Bay, Gonghu Bay and Southern Taihu) in summer and winter. Furthermore, spatial and seasonal distributions of arsenic species and their relations to water quality parameters were investigated with multivariate analysis techniques. Higher average contents of total arsenic (TAs), arsenate[As(Ⅴ)], arsenite[ As(Ⅲ)] and methylarsenicals [sum of monomethylarsenic acid (MMA) and dimethylarsenic acid (DMA)] were observed in northern regions (including Zhushan Bay, Meiliang Bay, and Gonghu Bay) (TAs:2.58-3.34 µg·L-1, As(Ⅴ):1.37-2.34 µg·L-1, As(Ⅲ):0.53-0.64 µg·L-1, methylarsenicals:0.16-0.36 µg·L-1), compared to those in Southern Taihu (1.73, 1.10, 0.31, 0.10 µg·L-1). The results exhibited obvious spatial characteristics of arsenic species in the surface water of Lake Taihu. Besides, average values of TAs, As(Ⅴ), As(Ⅲ) and methylarsenicals in summer were 3.40, 2.06, 0.73 and 0.25 µg·L-1, respectively, higher than those in winter (1.78, 1.10, 0.30, 0.17 µg·L-1), reflecting significant seasonal characteristics of arsenic distribution. Factor analysis revealed the significant relationships of TAs and As(Ⅴ) with several water quality parameters, which suggested that spatial and seasonal distributions of TAs and As(Ⅴ) in Lake Taihu were affected by external pollution and internal arsenic release from sediments. Redundancy analysis further indicated significant effects of total phosphorus (TP) and total iron (TFe) on the distributions of TAs and As(Ⅴ). At the mean time, the above statistical analyses exhibited that As(Ⅲ) and methylarsenicals were positively correlated with chlorophyll-a (Chl-a). A large amount of microalgae could accumulate As(Ⅴ) and transform it more strongly to As(Ⅲ) and methylarsenicals in eutrophic regions when compared to mesotrophic region,especially in summer, reflecting the regulation of microalgae on arsenic biotransformation.


Assuntos
Arsênio/análise , Arsenicais/análise , Monitoramento Ambiental , Lagos/química , Poluentes Químicos da Água/análise , China , Clorofila , Clorofila A , Eutrofização , Microalgas/metabolismo , Fósforo , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA