Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 241(1): 154-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37804058

RESUMO

Potassium (K+ ) is the most abundant inorganic cation in plant cells, playing a critical role in various plant functions. However, the impacts of K on natural terrestrial ecosystems have been less studied compared with nitrogen (N) and phosphorus (P). Here, we present a global meta-analysis aimed at quantifying the response of aboveground production to K addition. This analysis is based on 144 field K fertilization experiments. We also investigate the influences of climate, soil properties, ecosystem types, and fertilizer regimes on the responses of aboveground production. We find that: K addition significantly increases aboveground production by 12.3% (95% CI: 7.4-17.5%), suggesting a widespread occurrence of K limitation across terrestrial ecosystems; K limitation is more prominent in regions with humid climates, acidic soils, or weathered soils; the effect size of K addition varies among climate zones/regions, and is influenced by multiple factors; and previous N : K and K : P thresholds utilized to detect K limitation in wetlands cannot be applied to other biomes. Our findings emphasize the role of K in limiting terrestrial productivity, which should be integrated into future terrestrial ecosystems models.


Assuntos
Ecossistema , Potássio , Nitrogênio , Clima , Solo , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA