Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 140(10): 1145-1155, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35820059

RESUMO

Developing erythroblasts acquire massive amounts of iron through the transferrin (Tf) cycle, which involves endocytosis, sorting, and recycling of the Tf-Tf receptor (Tfrc) complex. Previous studies on the hemoglobin-deficit (hbd) mouse have shown that the exocyst complex is indispensable for the Tfrc recycling; however, the precise mechanism underlying the efficient exocytosis and recycling of Tfrc in erythroblasts remains unclear. Here, we identify the guanine nucleotide exchange factor Grab as a critical regulator of the Tf cycle and iron metabolism during erythropoiesis. Grab is highly expressed in differentiating erythroblasts. Loss of Grab diminishes the Tfrc recycling and iron uptake, leading to hemoglobinization defects in mouse primary erythroblasts, mammalian erythroleukemia cells, and zebrafish embryos. These defects can be alleviated by supplementing iron together with hinokitiol, a small-molecule natural compound that can mediate iron transport independent of the Tf cycle. Mechanistically, Grab regulates the exocytosis of Tfrc-associated vesicles by activating the GTPase Rab8, which subsequently promotes the recruitment of the exocyst complex and vesicle exocytosis. Our results reveal a critical role for Grab in regulating the Tf cycle and provide new insights into iron homeostasis and erythropoiesis.


Assuntos
Eritroblastos , Fatores de Troca do Nucleotídeo Guanina , Ferro , Receptores da Transferrina , Animais , Eritroblastos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ferro/metabolismo , Mamíferos/metabolismo , Camundongos , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Peixe-Zebra/metabolismo
2.
PLoS Genet ; 13(7): e1006892, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28692648

RESUMO

Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system. Compared to wild-type animals, mutant adult animals developed significantly higher systemic Mn levels, and Mn accumulated in the brain and liver of mutant embryos in response to exogenous Mn. Interestingly, slc30a10 mutants developed neurological deficits in adulthood, as well as environmental Mn-induced manganism in the embryonic stage; moreover, mutant animals had impaired dopaminergic and GABAergic signaling. Finally, mutant animals developed steatosis, liver fibrosis, and polycythemia accompanied by increased epo expression. This phenotype was rescued partially by EDTA- CaNa2 chelation therapy and iron supplementation. Interestingly, prior to the onset of slc30a10 expression, expressing ATP2C1 (ATPase secretory pathway Ca2+ transporting 1) protected mutant embryos from Mn exposure, suggesting a compensatory role for Atp2c1 in the absence of Slc30a10. Notably, expressing either wild-type or mutant forms of SLC30A10 was sufficient to inhibit the effect of ATP2C1 in response to Mn challenge in both zebrafish embryos and HeLa cells. These findings suggest that either activating ATP2C1 or restoring the Mn-induced trafficking of ATP2C1 can reduce Mn accumulation, providing a possible target for treating HMDPC.


Assuntos
ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte de Cátions/genética , Homeostase/genética , Manganês/metabolismo , Doenças Metabólicas/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions/deficiência , Genótipo , Células HeLa , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Mutação , Peixe-Zebra/genética , Transportador 8 de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA