Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 24(2): 125-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37957872

RESUMO

AIM: This study aims to explore the potential of Osmundacetone (OSC) as a new treatment for infantile hemangiomas (IH), the most common benign tumors in infancy. Currently, propranolol serves as the primary treatment for IH, but its effectiveness is limited, and it poses challenges of drug resistance and side effects. Therefore, there is a pressing need to identify alternative therapies for IH. METHODS: The effects of OSC on the proliferation and apoptosis of HemECs (endothelial cells from hemangiomas) were assessed using CCK-8 assay, colony formation assay, HOCHEST 33342 staining, and flow cytometry. Western blot analysis was performed to investigate OSC's influence on Caspases and angiogenesis-related proteins. Animal models were established using HemECs and BALB/c mice, and histological and immunohistochemical staining were conducted to evaluate the impact of OSC on mouse hemangiomas, VEGFR2, and MMP9 expression. RESULTS: OSC treatment significantly reduced HemECs' viability and colony-forming ability, while promoting apoptosis, as indicated by increased HOCHEST 33342 staining. OSC upregulated the protein expression of Bax, PARP, Caspase9, Caspase3, AIF, Cyto C, FADD, and Caspase8 in HemECs. In animal models, OSC treatment effectively reduced hemangioma size and improved histopathological changes. OSC also suppressed VEGFR2 and MMP9 expression while elevating Caspase3 levels in mouse hemangiomas. CONCLUSION: OSC demonstrated promising results in inhibiting HemECs' proliferation, inducing apoptosis, and ameliorating pathological changes in hemangiomas in mice. Moreover, it influenced the expression of crucial caspases and angiogenesis-related proteins. These findings suggest that OSC holds potential as a novel drug for clinical treatment of IH.


Assuntos
Células Endoteliais , Hemangioma , Cetonas , Animais , Camundongos , Caspases/metabolismo , Transdução de Sinais , Metaloproteinase 9 da Matriz/metabolismo , Angiogênese , Proliferação de Células , Hemangioma/tratamento farmacológico , Hemangioma/metabolismo , Hemangioma/patologia
2.
Cell Metab ; 34(2): 299-316.e6, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108516

RESUMO

Due to lack of nuclei and de novo protein synthesis, post-translational modification (PTM) is imperative for erythrocytes to regulate oxygen (O2) delivery and combat tissue hypoxia. Here, we report that erythrocyte transglutminase-2 (eTG2)-mediated PTM is essential to trigger O2 delivery by promoting bisphosphoglycerate mutase proteostasis and the Rapoport-Luebering glycolytic shunt for adaptation to hypoxia, in healthy humans ascending to high altitude and in two distinct murine models of hypoxia. In a pathological hypoxia model with chronic kidney disease (CKD), eTG2 is critical to combat renal hypoxia-induced reduction of Slc22a5 transcription and OCNT2 protein levels via HIF-1α-PPARα signaling to maintain carnitine homeostasis. Carnitine supplementation is an effective and safe therapeutic approach to counteract hypertension and progression of CKD by enhancing erythrocyte O2 delivery. Altogether, we reveal eTG2 as an erythrocyte protein stabilizer orchestrating O2 delivery and tissue adaptive metabolic reprogramming and identify carnitine-based therapy to mitigate hypoxia and CKD progression.


Assuntos
Carnitina , Insuficiência Renal Crônica , Animais , Carnitina/metabolismo , Eritrócitos/metabolismo , Eritrócitos/patologia , Homeostase , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Oxigênio/metabolismo , Insuficiência Renal Crônica/patologia , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Transglutaminases/metabolismo
3.
Biosci Rep ; 38(4)2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29789400

RESUMO

Carnosic acid (CA), a major polyphenolic diterpene present in Rosmarinus officinalis, has been reported to have multiple functions, including antitumor activity. The MTT assay, BrdU incorporation, wound healing, and colony formation were used to detect melanoma B16F10 cell growth and proliferation. Flow cytometry was used for cell cycle detection. p21 and p27 expression was detected by Western blotting. B16F10 cell xenograft model was established, and treated with CA, carmustine (BCNU), or lomustine (CCNU). The present study found that CA exhibits significant growth inhibition and cell cycle arrest in melanoma B16F10 cells. We also found that CA triggers cell cycle arrest at G0/G1 phase, and enhances p21 expression. Additionally, CA can enhance BCNU- and CCNU-mediated cytotoxicity and cell cycle arrest in B16F10 cells. Finally, we found that CA inhibits tumor growth, and reduces the values of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in vivo The present study study concluded that CA may be safe and useful as a novel chemotherapeutic agent.


Assuntos
Abietanos/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , Antioxidantes/uso terapêutico , Carmustina/uso terapêutico , Lomustina/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Abietanos/farmacologia , Animais , Antineoplásicos Alquilantes/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Carmustina/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Lomustina/farmacologia , Masculino , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL
4.
Am J Chin Med ; 45(2): 351-368, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28231747

RESUMO

Saikosaponin a (SSa) is one of the main active components of Bupleurum falcatum. It is commonly used to treat liver injury and fibrosis in traditional Chinese medicine. Our previous study showed that SSa induces apoptosis and inhibits the proliferation of rat hepatic stellate cell (HSC) line HSC-T6. The aim of the present study was to elucidate the mechanism of SSa-mediated apoptosis. Rat HSC cell line HSC-T6 and human HSC cell line LX-2 were used in this study. SSa triggered cell death mainly by apoptosis, as indicated by the typical morphological changes, sub-G1 phase of cell cycle increase, and activation of the caspase-9/caspase-3 cascade. In addition, SSa-induced apoptosis was partially inhibited by the caspase-3 inhibitor Z-DEVD-FMK, suggesting an involvement of caspase-3 dependent and independent pathways. Moreover, SSa upregulated pro-apoptotic proteins [BAK, Bcl-2-associated death promoter (BAD), and p53 upregulated modulator of apoptosis (PUMA)] and downregulated anti-apoptotic proteins (Bcl-2). In the mitochondria, SSa triggered the translocation of BAX and BAK from the cytosol to the outer membrane, resulting in a reduction of mitochondrial functions and membrane potential and subsequent release of apoptotic factors. Therefore, this study demonstrates that SSa induces apoptosis through the intrinsic mitochondrial-dependent pathway in HSCs.


Assuntos
Apoptose/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Mitocôndrias/metabolismo , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Animais , Apoptose/genética , Bupleurum , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Ácido Oleanólico/farmacologia , Ratos , Estimulação Química
5.
BMC Cancer ; 16: 532, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27461108

RESUMO

BACKGROUND: Saikosaponin d (SSd) is one of the main active triterpene saponins in Bupleurum falcatum. It has a steroid-like structure, and is reported to have pharmacological activities, including liver protection in rat, cell cycle arrest and apoptosis induction in several cancer cell lines. However, the biological functions and molecular mechanisms of mammalian cells under SSd treatment are still unclear. METHODS: The cytotoxicity and apoptosis of hepatic stellate cells (HSCs) upon SSd treatment were discovered by MTT assay, colony formation assay and flow cytometry. The collage I/III, caspase activity and apoptotic related genes were examined by quantitative PCR, Western blotting, immunofluorescence and ELISA. The mitochondrial functions were monitored by flow cytometry, MitoTracker staining, ATP production and XF24 bioenergetic assay. RESULTS: This study found that SSd triggers cell death via an apoptosis path. An example of this path might be typical apoptotic morphology, increased sub-G1 phase cell population, inhibition of cell proliferation and activation of caspase-3 and caspase-9. However, the apoptotic effects induced by SSd are partially blocked by the caspase-3 inhibitor, Z-DEVD-FMK, suggesting that SSd may trigger both HSC-T6 and LX-2 cell apoptosis through caspase-3-dependent and independent pathways. We also found that SSd can trigger BAX and BAK translocation from the cytosol to the mitochondria, resulting in mitochondrial function inhibition, membrane potential disruption. Finally, SSd also increases the release of apoptotic factors. CONCLUSIONS: The overall analytical data indicate that SSd-elicited cell death may occur through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian HSCs, and thus can delay the formation of liver fibrosis by reducing the level of HSCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Bupleurum/química , Inibidores de Caspase/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/tratamento farmacológico , Mitocôndrias/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Oligopeptídeos/farmacologia , Ratos , Saponinas/uso terapêutico , Triterpenos/uso terapêutico
6.
Oncol Rep ; 35(2): 659-68, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26719057

RESUMO

The fact that many chemotherapeutic drugs cause chemoresistance and side effects during the course of colorectal cancer treatment necessitates development of novel cytotoxic agents aiming to attenuate new molecular targets. Here, we show that Astragalus membranaceus (Fischer) Bge. var. mongolicus (Bge.) Hsiao (AM), a traditional Chinese medicine, can inhibit tumor growth in vivo and elucidate the underlying molecular mechanisms. The antitumor effect of AM was assessed on the subcutaneous tumors of human colorectal cancer cell line HCT116 grafted into nude mice. The mice were treated with either water or 500 mg/kg AM once per day, before being sacrificed for extraction of tumors, which were then subjected to microarray expression profiling. The gene expression of the extraction was then profiled using microarray analysis. The identified genes differentially expressed between treated mice and controls reveal that administration of AM suppresses chromosome organization, histone modification, and regulation of macromolecule metabolic process. A separate analysis focused on differentially expressed microRNAs revealing involvement of macromolecule metabolism, and intracellular transport, as well as several cancer signaling pathways. For validation, the input of the identified genes to The Library of Integrated Network-based Cellular Signatures led to many chemopreventive agents of natural origin that produce similar gene expression profiles to that of AM. The demonstrated effectiveness of AM suggests a potential therapeutic drug for colorectal cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/patologia , Medicamentos de Ervas Chinesas/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Astragalus propinquus , Células HCT116 , Humanos , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Nus , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Artigo em Inglês | MEDLINE | ID: mdl-22811744

RESUMO

The incidence of cirrhosis is rising due to the widespread occurrence of chronic hepatitis, as well as the evident lack of an established therapy for hepatic fibrosis. In the search for hepatoprotective therapeutic agents, Graptopetalum paraguayense (GP) showed greater cytotoxicity toward hepatic stellate cells than other tested herbal medicines. Histopathological and biochemical analyses suggest that GP treatment significantly prevented DMN-induced hepatic inflammation and fibrosis in rats. Microarray profiling indicated that expression of most of metabolism- and cell growth and/or maintenance-related genes recovered to near normal levels following GP treatment as classified by gene ontology and LSM analysis, was observed. ANOVA showed that expression of 64% of 256 liver damage-related genes recovered significantly after GP treatment. By examining rat liver samples with Q-RT-PCR, five liver damage-related genes were identified. Among them, Egr1 and Nrg1 may serve as necroinflammatory markers, and Btg2 may serve as a fibrosis marker. Oldr1 and Hmgcs1 were up- and down-regulated markers, respectively. A publicly accessible website has been established to provide access to these data Identification of 44 necroinflammation-related and 62 fibrosis-related genes provides useful insight into the molecular mechanisms underlying liver damage and provides potential targets for the rational development of therapeutic drugs such as GP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA