Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oncol Lett ; 16(5): 6323-6330, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30333889

RESUMO

Cetuximab, an epidermal growth factor receptor (EGFR)-targeting monoclonal antibody (mAb), is a novel targeted therapy for the treatment of patients with oral cancer. Cetuximab can be used in combination with chemotherapeutic agents to prolong the overall survival rates of patients with oral cancer. Curcumin is a traditional Chinese medicine, and it has been demonstrated to have growth-inhibiting effects on oral cancer cells. However, information regarding the combination of cetuximab and curcumin in drug-resistant oral cancer cells is lacking, and its underlying mechanism remains unclear. The purpose of the present study was to explore the oral anticancer effects of cetuximab combined with curcumin on cisplatin-resistant oral cancer CAR cell apoptosis in vitro. The results demonstrated that combination treatment synergistically potentiated the effect of cetuximab and curcumin on the suppression of cell viability and induction of apoptosis in CAR cells. Cetuximab and curcumin combination induced apoptosis and dramatically increased caspase-3 and caspase-9 activities compared with singular treatment. Combination treatment also markedly suppressed the protein expression levels of EGFR and mitogen-activated protein kinases (MAPKs) signaling (phosphorylation of ERK, JNK and p38). The results demonstrated that co-treatment with cetuximab and curcumin exerts synergistic oral anticancer effects on CAR cells through the suppression of the EGFR signaling by regulation of the MAPK pathway.

2.
Biochem Pharmacol ; 91(2): 217-30, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25076381

RESUMO

Fruiting bodies of Taiwanofungus camphoratus have been widely used as an antidote for food poisoning and considered to be a precious folk medicine for anti-inflammation and hepatoprotection. Zhankuic acid A (ZAA) is its major pharmacologically active compound. Janus kinase 2 (JAK2), whose activation is involved in cytokine signaling, plays critical roles in the development and biology of the hematopoietic system. JAK2 has been implicated as a therapeutic target in inflammatory diseases. The HotLig modeling approach was used to generate the binding model for ZAA with JAK2, showing that ZAA could bind to the ATP-binding pocket of JAK2 exclusively via the H-bond. The interaction between ZAA and JAK2 was verified by antibody competition assay. Binding of ZAA to JAK2 reduced antibody recognition of native JAK2. The expressions of phosphorylated JAK2 and STATs were analyzed by immuno-blotting. ZAA reduced the phosphorylation and downstream signaling of JAK2, and inhibited the interferon (IFN)-γ/signal transducer and activator of transcription (STAT) 1/interferon regulatory factor (IRF)-1 pathway. The protective effect of ZAA on liver injury was evaluated in mice by Con-A-induced acute hepatitis. Pre-treatment with ZAA also significantly ameliorated acute liver injury in mice. Therefore, ZAA can inhibit JAK2 phosphorylation and protect against liver injury during acute hepatitis in mice. In this study, we present data that ZAA exerts anti-inflammatory effects through the JAK2 signaling pathway. As such, ZAA may be a potential therapeutic agent for the treatment of inflammatory diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Concanavalina A/toxicidade , Ergosterol/análogos & derivados , Janus Quinase 2/antagonistas & inibidores , Mitógenos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ergosterol/química , Ergosterol/farmacologia , Ergosterol/uso terapêutico , Expressão Gênica , Humanos , Janus Quinase 2/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estrutura Molecular , Baço/citologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/fisiologia
3.
Nutr Cancer ; 62(5): 648-58, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20574926

RESUMO

Lingzhi (ganoderma) is an important woody mushroom that is known for its medicinal benefits in China since ancient times. The mode of action in humans is still not clear. Using microarray technology, we have compared the ethanol extracts of two different lingzhi (red lingzhi, G. lucidum; and purple lingzhi, G. sinense) for their effects on gene expression profile in human monocytic cells. Our results suggest that at best approximately 25% of target genes are common to the two lingzhi: functionally ranging from cell development, negative regulation of cellular process, and cellular protein metabolic process to signal transduction and transcription. The pathways mediated by purple lingzhi focus on inflammation and immune response, whereas red lingzhi modestly increases levels of expression for genes involved in macromolecule metabolism. Furthermore, our ethanolic extracts of both red and purple lingzhi do not inhibit monocytic cell growth. The extract of red lingzhi does not have significant effect on the genes in the nuclear factor kappa B (NFkappaB) pathway (an important inflammation pathway), whereas the extract of purple lingzhi can increase multiple key genes in the NFkappaB pathway. Altogether, our results suggest that the common mode of action for lingzhi is complex; and different species of Ganoderma can modulate different pathways in human cells.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hidrocarboneto de Aril Hidroxilases , Linhagem Celular , Citocromo P-450 CYP1B1 , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Humanos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Reishi
4.
Evid Based Complement Alternat Med ; 6(1): 91-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18955216

RESUMO

The herb feverfew is a folk remedy for various symptoms including inflammation. Inflammation has recently been implicated in the genesis of many diseases including cancers, atherosclerosis and rheumatoid arthritis. The mechanisms of action of feverfew in the human body are largely unknown. To determine the cellular targets of feverfew extracts, we have utilized oligo microarrays to study the gene expression profiles elicited by feverfew extracts in human monocytic THP-1 cells. We have identified 400 genes that are consistently regulated by feverfew extracts. Most of the genes are involved in cellular metabolism. However, the genes undergoing the highest degree of change by feverfew treatment are involved in other pathways including chemokine function, water homeostasis and heme-mediated signaling. Our results also suggest that feverfew extracts effectively reduce Lipopolysaccharides (LPS)-mediated TNF-alpha and CCL2 (MCP-1) releases by THP-1 cells. We hypothesize that feverfew components mediate metabolism, cell migration and cytokine production in human monocytes/macrophages.

5.
Can J Physiol Pharmacol ; 85(11): 1108-15, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18066113

RESUMO

The herb feverfew is a folk remedy for various conditions, including inflammation, fever, psoriasis, rheumatism, and asthma. Like many herbal medicines, feverfew's mechanisms of action in the human body are largely unknown and its active ingredients remain elusive. Very often, different extraction methods of herb material produce different physical and biochemical properties and variation in clinical efficacy. We identified 3 major methods of extraction for feverfew aerial parts and used microarray technology to test the hypothesis that extracts produced by different methods elicit different gene expression profiles. We have identified approximately 200 genes that are consistently regulated by the 2 presumptive active antimigraine feverfew extracts but not associated with the inactive extract. Our results suggest that the presumptive active feverfew extracts potently stimulate more genes in human cells than the inactive extracts. We also identified several genes as unique signatures for these active extracts. All 3 feverfew extracts exhibited similar blockades on lipopolysaccharide-mediated TNF-alpha (tumor necrosis factor alpha) release, implicating that TNF-alpha is not responsible for the differences in the effects of the 3 feverfew extracts in human cells. In contrast, the active extracts more effectively suppressed CCL2 (also known as monocyte chemoattractant protein 1, MCP-1) than the inactive extracts, suggesting that CCL2 is a potential cellular target for feverfew's antimigraine effects.


Assuntos
Perfilação da Expressão Gênica , Transtornos de Enxaqueca/tratamento farmacológico , Monócitos/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Tanacetum parthenium , Linhagem Celular , Quimiocina CCL2/biossíntese , Humanos , Monócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA