Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 987997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091824

RESUMO

Background: Qinzhi Zhudan Formula (QZZD), optimized from Angong Niuhuang Wan, consists of Radix Scutellariae, Fructus Gardeniae and Pulvis Fellis Suis. We had investigated the neuroprotective effects of QZZD and its active components, and demonstrated that it could treat cerebral ischemia and dementia through multiple pathways and mechanisms. Nevertheless, toxicological data on this formula still remains limited. In the study, we sought to examine the toxicological effects of QZZD during the treatment and recovery periods. Methods: We investigated potential toxicities of QZZD in Sprague-Dawley (SD) rats via 28-day gavage administration. SD rats were randomly divided into control group and treatment groups of A (0.5 g/kg/d QZZD), B (1.5 g/kg/d QZZD), and C (5.0 g/kg/d QZZD). The 56-day course includes treatment period (administration with water or QZZD once a day for 28 consecutive days) and recovery period (28 days). The rats received daily monitoring of general signs of toxicity and mortality, as well as weekly determination of body weight and food consumption. Moreover, the complete blood cell count, biochemistry, coagulation, and urine indicators, organ weights, and histopathological report were analyzed respectively at the end of the treatment and recovery periods. Results: There was no death related to the active pharmaceutical ingredients of QZZD during the treatment period. The maximum no observed adverse effect level (NOAEL) was 0.5 g/kg/d, which is approximately 16.7 times of the equivalent dose of clinical dose in rats. In group TB (1.5 g/kg/d QZZD) and TC (5.0 g/kg/d QZZD), there were adverse effects of blue coloring of tail skin, weight loss, a significant increase of total bilirubin (TBIL), blackening of liver and kidney in gross examination, hyperplasia of bile duct and karyomegaly of hepatocytes in histopathological examination. Besides, in females rats, the food consumption was reduced, while in male rats, there was decrease in triglycerides (TG) and slight increase in white blood cell (WBC) count and neutrophils. In group TC (5.0 g/kg/d QZZD), the indicators of red blood cell (RBC) count, hemoglobin (HGB) and hematocrit (HCT) were decreased slightly, while the platelet count (PLT) was increased. However, these changes were not considered to be toxicologically significant because they resolved during the recovery period. Conclusion: Overall, QZZD exhibited a good safety profile. The maximum no observed adverse effect level was 0.5 g/kg/d, and no target organs toxicity were identified. The present findings might confirm the safety of QZZD in clinical practices.

2.
J Ethnopharmacol ; 284: 114507, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34384847

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Calculus bovis is commonly used in traditional Chinese medicine for the treatment of cerebrovascular diseases given its roles in clearing away heat, detoxification and pain relief. Calculus bovis is used the treatment of cerebral ischaemia, liver and gallbladder diseases and various inflammatory conditions. However, the mechanism of action of calculus bovis in the treatment of ischaemic stroke is not well understood. AIM OF THE STUDY: In this study, the anti-inflammatory, antioxidative and antiapoptotic effects of calculus bovis on neurovascular units were studied, and the mechanism of action of calculus bovis on neurovascular units was also discussed. MATERIALS AND METHODS: Neurons, astrocytes, and endothelial cells were used to construct models of brain neurovascular units in vitro. The oxygen-glucose deprivation/reoxygenation and glucose (OGD/R) model was used to assess the effects of in vitro cultured calculus bovis on inflammatory factors, oxidative stress, and apoptosis. ZO-1, Occludin, Claudin-5, HIF-1, VEGF, PI3K, Akt, Bax, Bcl-2, and Caspase-3 expression was detected. RESULTS: In vitro cultured calculus bovis protects the blood-brain barrier; repairs tight junction proteins; increases ZO-1, Occludin and Claudin-5 protein expression; maintains TEER(transepithelial electrical resistance) values; repairs damaged endothelial cells; increases γ-GT activity; reduces LDH and inflammatory injury; and reduces TNF-α, LI-6, and IL-1ß levels. In vitro cultured calculus bovis reduces oxidative stress damage and NO and improves SOD activity. In vitro cultured calculus bovis protects neurons through antiapoptotic activities, including reductions in the apoptotic proteins Bax and Caspase-3, increases in Bcl-2 protein expression, and protection of brain neurovascular units through the HIF/VEGF and PI3K/Akt signalling pathways. CONCLUSION: In summary, the protective effect of calculus bovis on neurovascular units is achieved through antioxidative, anti-inflammatory and antiapoptotic effects. The mechanism of action of in vitro cultured calculus bovis in ischaemic stroke involves multiple targets and signalling pathways. The PI3K/Akt, HIF-1α and VEGF pathways effectively protect neurovascular units in the brain.


Assuntos
Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , AVC Isquêmico/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Isquemia Encefálica/tratamento farmacológico , Bovinos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Farmacologia em Rede , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA