Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Ther Med ; 26(5): 527, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37869646

RESUMO

The clinical incidence of congestive heart failure (CHF) is very high and it poses a significant threat to the health of patients. The traditional Chinese medicine monomer salsolinol is widely used to treat similar symptoms of CHF. However, there have been no reports on the effect of salsolinol for the management of CHF and its effects on myocardial fibrosis. In the present study, salsolinol was used to treat angiotensin II (AngII)-induced human cardiac fibroblasts (HCFs) and cell proliferation and migration were assessed using a CCK-8, EdU staining assay and wound healing assay. Subsequently, immunofluorescence, western blotting and other techniques were used to detect indicators associated with cell fibrosis and relevant kits were used to detect markers of cellular inflammation and reactive oxygen species (ROS) production. Molecular docking analysis was used to predict the relationship between salsolinol and lysine-specific histone demethylase 1A (LSD1). Subsequently, the expression of LSD1 in the serum of CHF patients was detected by reverse transcription-quantitative PCR. Finally, LSD1 was overexpressed in cells to explore the regulatory mechanism of salsolinol in AngII-induced HFCs. Salsolinol reduced the proliferation and migration. Salsolinol reduced the expression of fibrosis marker proteins α-smooth muscle actin, Collagen I and Collagen III in a concentration-dependent manner, thereby reducing cell fibrosis. In addition, salsolinol reduced the levels of TNF-α and IL-6 in the cell supernatant and ROS production following AngII induction. Salsolinol inhibited LSD1 expression and regulated the STAT3/Notch-1 signaling pathway. Upregulation of LSD1 reversed the effects of salsolinol on AngII-induced HCFs. Salsolinol inhibited LSD1 via regulation of the STAT3/Notch-1 signaling pathway to improve Ang II-induced myocardial fibrosis in vitro.

2.
Phytomedicine ; 121: 155115, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801896

RESUMO

BACKGROUND: Evodia Rutaecarpa-processed Coptidis Rhizoma (ECR) is a traditional Chinese medicine for the treatment of ulcerative colitis (UC) in China. However, the mechanisms underlying the ECR processing are not elucidated. PURPOSE: Coptidis Rhizoma (CR) regulates the gut microbiota in the treatment of gastrointestinal diseases. This study explored the mechanism of action of ECR before and after processing in UC in view of the regulation of gut microecology. STUDY DESIGN: A preclinical experimental investigation was performed using a mouse model of UC to examine the regulatory effect of ECR and its mechanisms through gut microbiota analysis and metabolomic assays. METHODS: Mice received 4% dextran sulfate sodium to establish a UC model and treated with ECR and CR. Colonic histopathology and inflammatory changes were observed. Gut microbiota was analyzed using 16 s rRNA sequencing. Transplants of Lactobacillus reuteri were used to explore the correlation between ECR processing and the gut microbiota. The expression of mucin-2, Lgr5, and PCNA in colonic epithelial cells was measured using immunofluorescence. Wnt3a and ß-catenin levels were detected by western blotting. The metabolites in the colon tissue were analyzed using a targeted energy metabolomic assay. The effect of energy metabolite α-ketoglutarate (α-KG) on L. reuteri growth and UC were verified in mice. RESULTS: ECR improved the effects on UC in mice compared to CR, including alleviating colonic injury and inflammation, and modulating gut microbiota by increasing L. reuteri level. L. reuteri dose-dependently alleviated colonic injury, increased mucin-2 level, and promoted colonic epithelial regeneration by increasing Lgr5 and PCNA expression. This was consistent with the results before and after ECR processing. L. reuteri promoted epithelial regeneration by upregulating Wnt/ß-catenin pathway. Moreover, ECR increased metabolites levels (especially α-KG) to promote energy metabolism in the colon tissue compared to CR. α-KG treatment increased L. reuteri level and alleviated mucosal damage in UC mice. It promoted L. reuteri growth by increasing the energy metabolic status by enhancing α-KG dehydrogenase activity. CONCLUSION: ECR processing improves the therapeutic effects of UC via the α-KG-L. reuteri-epithelial regeneration axis.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Evodia , Limosilactobacillus reuteri , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Ácidos Cetoglutáricos , Medicamentos de Ervas Chinesas/farmacologia , Mucina-2 , beta Catenina , Antígeno Nuclear de Célula em Proliferação , Colo , Modelos Animais de Doenças , Sulfato de Dextrana , Camundongos Endogâmicos C57BL
3.
Front Pharmacol ; 14: 1180618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601063

RESUMO

Neuroinflammation is considered to have a prominent role in the pathogenesis of Alzheimer's disease (AD). Microglia are the resident macrophages of the central nervous system, and modulating microglia activation is a promising strategy to prevent AD. Essential oil of Jasminum grandiflorum L. flowers is commonly used in folk medicine for the relief of mental pressure and disorders, and analyzing the volatile compound profiles and evaluating the inhibitory effects of J. grandiflorum L. essential oil (JGEO) on the excessive activation of microglia are valuable for its application. This study aims to explore the potential active compounds in JGEO for treating AD by inhibiting microglia activation-integrated network pharmacology, molecular docking, and the microglia model. A headspace solid-phase microextraction combined with the gas chromatography-mass spectrometry procedure was used to analyze the volatile characteristics of the compounds in J. grandiflorum L. flowers at 50°C, 70°C, 90°C, and 100°C for 50 min, respectively. A network pharmacological analysis and molecular docking were used to predict the key compounds, key targets, and binding energies based on the detected compounds in JGEO. In the lipopolysaccharide (LPS)-induced BV-2 cell model, the cells were treated with 100 ng/mL of LPS and JGEO at 7.5, 15.0, and 30 µg/mL, and then, the morphological changes, the production of nitric oxide (NO) and reactive oxygen species, and the expressions of tumor necrosis factor-α, interleukin-1ß, and ionized calcium-binding adapter molecule 1 of BV-2 cells were analyzed. A total of 34 compounds with significantly different volatilities were identified. α-Hexylcinnamaldehyde, nerolidol, hexahydrofarnesyl acetone, dodecanal, and decanal were predicted as the top five key compounds, and SRC, EGFR, VEGFA, HSP90AA1, and ESR1 were the top five key targets. In addition, the binding energies between them were less than -3.9 kcal/mol. BV-2 cells were activated by LPS with morphological changes, and JGEO not only could clearly reverse the changes but also significantly inhibited the production of NO and reactive oxygen species and suppressed the expressions of tumor necrosis factor-α, interleukin-1ß, and ionized calcium-binding adapter molecule 1. The findings indicate that JGEO could inhibit the overactivation of microglia characterized by decreasing the neuroinflammatory and oxidative stress responses through the multi-compound and multi-target action modes, which support the traditional use of JGEO in treating neuroinflammation-related disorders.

4.
Fitoterapia ; 169: 105604, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423500

RESUMO

Five undescribed sesquiterpenoid dimers, aucklandiolides A-E (1-5), one new sesquiterpenoid glycoside, ß-cyclocostunolide-15-ß-D-glucopyranoside (6), and seventeen known analogues (7-23) were isolated from the roots of Aucklandia costus. Their structures were elucidated by comprehensive HRESIMS and NMR spectroscopic data analysis, and their configurations were confirmed by the computational calculations of ECD and NMR chemical shifts. Aucklandiolides A and B are the first examples of dimeric sesquiterpenoids with a unique 6/6/6/5/6/6 ring system originated from a proposed Diels-Alder cycloaddition between two eudesmane sesquiterpenoids. Besides, compounds 9-11, 20, and 22 showed significant inhibition of nitric oxide production in LPS-stimulated RAW 264.7 cells at a concentration of 20 µM.


Assuntos
Saussurea , Sesquiterpenos , Animais , Camundongos , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Células RAW 264.7 , Óxido Nítrico , Sesquiterpenos/farmacologia , Sesquiterpenos/química
5.
J Ethnopharmacol ; 303: 116007, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473618

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xianglian pill (XLP), a traditional Chinese formula, is widely used as treatment for ulcerative colitis (UC) in China. However, the mechanism of its therapeutic effect is still unclear. AIM OF THE STUDY: Our previous studies showed a low oral bioavailability and a predominant distribution of major XLP ingredients in the gut. In the present study, we aimed to explore the mechanism of action of XLP on UC with respect to the regulation of gut microecology. MATERIALS AND METHODS: UC model rats established using 5% dextran sulfate sodium were treated with XLP. After the treatment period, bodyweight, colon length, histopathology, and inflammatory changes were evaluated. Further, changes in gut microbiota structure were detected via 16S rRNA sequencing, and microbial metabolites in feces were analyzed via a metabolomic assay. Antibiotic intervention and fecal microbiota transplantation were also employed to explore the involvement of gut microbiota, while the level of regulatory T cells (Tregs) in mesenteric lymph nodes was determined via flow cytometry. Transcriptome sequencing was also performed to determine colonic gene changes. RESULTS: XLP alleviated colonic injury, inflammation, and gut microbial dysbiosis in UC model rats and also changed microbial metabolite levels. Particularly, it significantly decreased succinate level in the tyrosine pathway. We also observed that fecal microbiota derived from XLP-treated rats conferred resilience to UC model rats. However, this therapeutic effect of XLP on UC was inhibited by succinate. Moreover, XLP increased the level of anti-inflammatory cellular Tregs via gut microbiota. However, this beneficial effect was counteracted by succinate supplementation. Further, XLP induced the differentiation of Treg possibly by the regulation of the PHD2/HIF-1α pathway via decreasing microbial succinate production. CONCLUSIONS: Our findings indicated that XLP exerts its therapeutic effects on UC mainly via the gut microbiota-succinate-Treg differentiation axis.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Linfócitos T Reguladores , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Ácido Succínico/uso terapêutico , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Colo , Succinatos/farmacologia , Sulfato de Dextrana/toxicidade , Colite/tratamento farmacológico , Modelos Animais de Doenças
6.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6509-6518, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212008

RESUMO

This study investigated the differences in excretion kinetics of three alkaloids and their four metabolites from Simiao Pills in normal and type 2 diabetic rats. The diabetes model was established in rats by injection of streptozotocin, and the alkaloids in urine, feces, and bile of normal and diabetic rats were detected by LC-MS/MS to explore the effect of diabetes on alkaloid excretion of Simiao Pills. The results showed that 72 h after intragastric administration of the extract of Simiao Pills, feces were the main excretion route of alkaloids from Simiao Pills. The total excretion rates of magnoflorine and berberine in normal rats were 4.87% and 56.54%, which decreased to 2.35% and 35.53% in diabetic rats, which had statistical significance(P<0.05). The total excretion rates of phellodendrine, magnoflorine, and berberine in the urine of diabetic rats decreased significantly, which were 53.57%, 60.84%, and 52.78% of those in normal rats, respectively. After 12 h of intragastric administration, the excretion rate of berberine in the bile of diabetic rats increased significantly, which was 253.33% of that of normal rats. In the condition of diabetes, the excretion rate of berberine metabolite, thalifendine significantly decreased in urine and feces, but significantly increased in bile. The total excretion rates of jateorrhizine and palmatine in the urine increased significantly, and t_(1/2) and K_e changed significantly. The results showed that diabetes affected the in vivo process of alkaloids from Simiao Pills, reducing their excretion in the form of prototype drug, affecting the biotransformation of berberine, and ultimately increasing the exposure of alkaloids in vivo, which would be conducive to the hypoglycemic effect of alkaloids. This study provides references for the clinical application and drug development of Simiao Pills in diabetes.


Assuntos
Alcaloides , Berberina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Bile/metabolismo , Cromatografia Líquida/métodos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Fezes , Alcaloides/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
7.
Biomed Pharmacother ; 155: 113719, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152417

RESUMO

Acute bacterial diarrhea is a severe global problem with a particularly high incidence rate in children. The microecology inhabiting the intestinal mucosa is the key factor leading to diarrhea. Gegen Qinlian decoction (GQD) is used to treat bacterial diarrhea, however, its underlying mechanism remains unclear. Thus, this study aimed to clarify the restorative effect of GQD on the intestinal barrier from the perspective of gut microbiota. A Tibetan piglet model with bacterial diarrhea was established through orally administered Escherichia coli, and diarrheal piglets were treated with GQD for three days. After treatment, GQD significantly ameliorated the diarrheal symptoms. GQD decreased the levels of IL-6, LPS, and DAO, and increased SIgA, ZO-1, and occludin levels in intestinal mucosa, indicating the restoration of intestinal barrier. GQD modulated the microbial compositions inhabited on the intestinal mucosa, especially an increase of the Lactobacillus. Spearman analysis showed that Lactobacillus was the key genus of intestinal barrier-related bacteria. Bacterial culture in vitro validated that GQD directly promoted Lactobacillus growth and inhibited E. coli proliferation. Moreover, the expressions of TLR2, MyD88, and NF-κB in the colon decreased after GQD treatment. In conclusion, GQD may treat diarrhea and restore the intestinal mucosal barrier by facilitating Lactobacillus growth and inhibiting the TLR2/MyD88/NF-κB signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , NF-kappa B , Animais , Suínos , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/metabolismo , Ocludina/metabolismo , Lactobacillus , Escherichia coli/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Medicamentos de Ervas Chinesas/farmacologia , Diarreia/metabolismo , Imunoglobulina A Secretora/metabolismo
8.
J Ethnopharmacol ; 289: 115057, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35121050

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hehuan Yin decoction (HHY), first recorded in the Jingyue Quanshu (published in 1624 A.D.), is composed of Albizia julibrissin Durazz. and Ampelopsis japonica (Thunb.) Makino. AIM OF THE STUDY: This study aimed to investigate the mechanism of action of HHY in treating polycystic ovary syndrome with insulin resistance (PCOS-IR). MATERIALS AND METHODS: Network pharmacology and molecular docking were used to predict active compounds, potential targets, and pathways for PCOS-IR treatment using HHY. Female Sprague-Dawley rats were administered letrozole (1 mg/kg) with a high-fat diet to establish a PCOS-IR model. Thereafter, symptoms, ovarian pathology, serum insulin resistance, and sex hormone levels were determined. Western blotting was used to determine the levels of PI3Kp85α, AKT, phospho (p)-AKT, and GSK3ß in the ovaries of rats. RESULTS: Network pharmacology revealed 58 components in HHY and 182 potential targets that were shared between HHY and PCOS-IR. HHY could potentially treat PCOS-IR via the insulin resistance, PI3K/AKT, HIF-1, and steroid hormone biosynthesis pathways. Molecular docking revealed that PI3K, AKT1, GSK3ß, IRS1, and EGFR had high affinities to HHY compounds. In the PCOS-IR rats, HHY significantly normalised the symptoms and ovarian pathology, increased follicle-stimulating hormone (FSH) and oestradiol levels in the serum, and decreased the levels of fasting plasma glucose and fasting insulin, as well as the insulin resistance index. HHY also decreased the luteinising hormone (LH) and testosterone levels and the LH/FSH ratio in the PCOS-IR rats and increased the levels of PI3K, p-AKT, and GSK3ß in ovary tissue, which indicated the activation of the PI3K/AKT pathway. CONCLUSIONS: HHY can improve PCOS-IR symptoms via multiple pharmacological pathways and may be a potential alternative therapy for the treatment of PCOS-IR.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Resistência à Insulina , Síndrome do Ovário Policístico/tratamento farmacológico , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Letrozol , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Biomed Chromatogr ; 36(1): e5254, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34605575

RESUMO

Phellodendri Chinensis Cortex (PCC) and Atractylodis Rhizoma (AR) are frequently used as herb pair to treat eczema and gout owing to their synergistic effects. Alkaloids are the major ingredients from PCC and the effect of their combination on the in vivo processing of alkaloids remains unclear. In this study, a simple and reliable UPLC-MS/MS method for simultaneous determination of six alkaloids in rat plasma was developed. This method was applied to a comparative pharmacokinetic study between PCC and PCC-AR in rats. Effect of AR on absorption of alkaloids was investigated by a single-pass intestinal perfusion study. The effect of AR on urinary excretion of alkaloids was studied. Pharmacokinetic studies showed that the values of rea under the concentration-time curve of phellodendrine, magnoflorine and palmatine were greater in the PCC-AR group than in the PCC group. The intestinal absorptive parameters absorption rate constant and effective permeability of phellodendrine and jatrorrhizine in PCC-AR groups were higher than those in the PCC group. Urinary excretion studies revealed that the excreted amount of alkaloids in the PCC-AR group was lower than that in the PCC group. The results revealed that the combination of PCC and AR improves intestinal absorption of alkaloids and reduces their urinary excretion, which enhances their systemic exposure. This study may explain the synergetic effects of PCC and AR in clinical applications.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Absorção Intestinal/efeitos dos fármacos , Alcaloides/sangue , Alcaloides/farmacocinética , Alcaloides/urina , Animais , Cromatografia Líquida , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
10.
J Ethnopharmacol ; 286: 114901, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34890730

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pheretima is a traditional Chinese medicine that could treat various lung diseases such as asthma, pneumonia, and lung cancer effectively; however, limited studies on the use of Pheretima protein in the treatment of lung diseases have been conducted to date. AIM OF THE STUDY: The aim of this study was to explain the antipulmonary fibrosis mechanism of the Pheretima protein and elucidate its possible cell signaling pathways. MATERIAL AND METHODS: Fresh pheretima was freeze-dried to obtain the Pheretima protein. Divide C57BL/6 mice into control and bleomycin (BLM)-induced models, pirfenidone, and Pheretima protein-treatment groups. Three weeks later, they were treated with H&E and Masson's trichrome staining to assess lung injury and fibrosis. Pulmonary fibrosis was assessed using immunohistochemistry (IHC), realtime-PCR (RT-PCR), and western blotting. Inflammation was assessed using the alveolar lavage fluid. RESULTS: Pheretima protein inhibited epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition and reduced inflammation. It also reduced the levels of Smad2/3, pSmad2/3, and transforming growth factor-beta 1 (TGF-ß1). Thus, our results indicate that Pheretima protein can alleviate BLM-induced pulmonary fibrosis in a mouse model. CONCLUSION: Pheretima protein inhibits ECM, EMT, and antiinflammatory markers, which in turn ameliorates BLM-induced pulmonary fibrosis. Preliminary mechanistic studies indicated that Pheretima protein can exert its biological activity by downregulating the TGF-ß1/Smad2/3 pathway.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Inflamação/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Proteínas/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Bleomicina , Modelos Animais de Doenças , Liofilização , Fibrose Pulmonar Idiopática/fisiopatologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligoquetos/química , Proteínas/isolamento & purificação , Piridonas/farmacologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
11.
Food Res Int ; 150(Pt A): 110717, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865748

RESUMO

Type 2 diabetes mellitus (T2DM) has become a worldwide concern in recent years. Coix seed (CS) as a homologous substance of traditional Chinese medicine and food, its polysaccharides can improve the symptoms of patients with metabolic disorders. Since most plant polysaccharides are difficult to digest and absorb, we hypothesized that Coix seed polysaccharides (CSP) exert hypoglycemic effects through the gut. In this study, the underlying mechanisms regulating hypoglycemic effects of CSP on a T2DM mouse model were investigated. After treatment with CSP, serum insulin and high-density lipoprotein cholesterol levels were increased, while total cholesterol, triglycerides and low-density lipoprotein cholesterol levels were decreased in T2DM mice. In addition, CSP treatment helped repair the intestinal barrier and modulated the gut microbial composition in T2DM mice, mainly facilitating the growth of short-chain fatty acid (SCFA)-producing bacteria, Spearman's analysis revealed these bacteria were positively related with the hypoglycemic efficacy of CSP. Colonic transcriptome analysis indicated the hypoglycemic effect of CSP was associated with the activation of the IGF1/PI3K/AKT signaling pathway. Correlative analysis revealed that this activation may result from the increase of SCFAs-producing bacteria by CSP. GC-MS detection verified that CSP treatment increased fecal SCFAs levels. Molecular docking revealed that SCFAs could bind with IGF1, PI3K, and AKT. Our findings demonstrated that CSP treatment modulates gut microbial composition, especially of the SCFAs-producing bacteria, activates the IGF1/PI3K/AKT signaling pathways, and exhibits hypoglycemic efficacy.


Assuntos
Coix , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Coix/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ácidos Graxos Voláteis , Humanos , Fator de Crescimento Insulin-Like I , Camundongos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Polissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
12.
Phytomedicine ; 82: 153458, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33486267

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic inflammatory bowel disease with high morbidity, which leads to poor quality of life. The Xianglian pill (XLP) is a classical Chinese patent medicine and has been clinically proven to be an effective treatment for UC. PURPOSE: The pharmacological mechanism of the key bioactive ingredients of XLP for the treatment of UC was investigated by a network pharmacology and pharmacokinetics integrated strategy. STUDY DESIGN AND METHODS: Network pharmacology was used to analyze the treatment effect of nine quantified XLP ingredients on UC. Key pathways were enriched and analyzed by protein-protein interaction and Kyoto Encyclopedia of Genes and Genomes analyses. The effect of XLP on Th17 cell differentiation was validated using a mouse model of UC. The binding of nine compounds with JAk2, STAT3, HIF-1α, and HSP90AB1 was assessed using molecular docking. A simple and reliable ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous quantification of nine ingredients from XLP in plasma and applied to a pharmacokinetic study following oral administration. RESULTS: Nine compounds of XLP, including coptisine, berberine, magnoflorine,berberrubine, jatrorrhizine, palmatine, evodiamine, rutaecarpine, and dehydrocostus lactone, were detected. Network pharmacology revealed 50 crossover genes between the nine compoundsand UC. XLP treats UC mainly by regulating key pathways of the immune system, including Th17 cell differentiation, Jak-Stat, and PI3K-Akt signaling pathways. An in vivo validation in mice found that XLP inhibits Th17 cell differentiation by suppressing the Jak2-Stat3 pathway, which alleviates mucosal inflammation in UC. Molecular docking confirmed that eight compounds are capable of binding with JAk2, HIF-1α, and HSP90AB1, further confirming the inhibitory effect of XLP on the Jak2-Stat3 pathway. Moreover, apharmacokinetic study revealed that the nine ingredients of XLP are exposed in the plasma and colon tissue, which demonstrates its pharmacological effect on UC. CONCLUSION: This study evaluates the clinical treatment efficacy of XLP for UC. The network pharmacology and pharmacokinetics integrated strategy evaluation paradigm is efficient in discovering the key pharmacological mechanism of herbal formulae.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Camundongos , Simulação de Acoplamento Molecular , Proteínas Quinases/metabolismo , Qualidade de Vida , Fator de Transcrição STAT3/metabolismo , Células Th17/efeitos dos fármacos
13.
J Immunol Res ; 2020: 6841078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32537469

RESUMO

Mahuang Fuzi Xixin Decoction (MFXD), a Chinese traditional herbal formulation, has been used to treat allergic rhinitis (AR) in China for centuries. However, the mechanism underlying its effect on AR is unclear. This study investigated the mechanism underlying the therapeutic effects of MFXD on AR. Ovalbumin-induced AR rat models were established, which were then treated with MFXD for 14 days. Symptom scores of AR were calculated. The structure of the gut microbiota was analyzed by 16S rRNA gene sequencing and qPCR. Short-chain fatty acid (SCFA) content in rat stool and serum was determined by GC-MS. Inflammatory and immunological responses were assessed by histopathology, ELISA, flow cytometry, and western blotting. Our study demonstrated that MFXD reduced the symptom scores of AR and serum IgE and histamine levels. MFXD treatment restored the diversity of the gut microbiota: it increased the abundance of Firmicutes and Bacteroidetes and decreased the abundance of Proteobacteria and Cyanobacteria. MFXD treatment also increased SCFA content, including that of acetate, propionate, and butyrate. Additionally, MFXD administration downregulated the number of Th17 cells and the levels of the Th17-related cytokines IL-17 and RORγt. By contrast, there was an increase in the number of Treg cells and the levels of the Treg-related cytokines IL-10 and Foxp3. MFXD and butyrate increased the levels of ZO-1 in the colon. This study indicated MFXD exerts therapeutic effects against AR, possibly by regulating the gut microbial composition and Th17/Treg balance.


Assuntos
Antialérgicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal/imunologia , Extratos Vegetais/uso terapêutico , Rinite Alérgica/terapia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Modelos Animais de Doenças , Humanos , Imunoglobulina E/sangue , Masculino , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ratos , Ratos Wistar
14.
Artigo em Inglês | MEDLINE | ID: mdl-30562628

RESUMO

Puerariae Radix (PR) and Gastrodiae Rhizome (GR) is frequently used in traditional herbal formulas to treat cardio-cerebral vascular diseases due to their synergistic effects. In this study, to elucidate the action mechanism of PR-GR in vivo, a simple and reliable ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for simultaneous determination of nine bioactive ingredients from PR-GR in plasma was developed and applied to a comparative pharmacokinetic study following oral administration of PR, GR, and PR-GR aqueous extracts in rats. The effect of GR on the absorption of components of PR was also investigated by single-pass intestinal perfusion study. Results showed that comparing to the single herbs, PR-GR extract significantly increased the systemic exposure of puerarin, 3'-hydroxypuerarin, 3'-methoxypuerarin, 6″-O-xylosylpuerarin, daidzin, genistein, and gastrodin. Moreover, the intestinal absorption of puerarin and daidzin could be improved by GR extract and inhibitors of P-glycoprotein and multidrug resistanceassociated protein 2, respectively. These results indicate that the combination of PR and GR increases the levels of their bioactive ingredients exposed in the blood, and GR increases the absorption of ingredients of PR may by inhibition of the efflux mediated by P-glycoprotein and multidrug resistanceassociated protein 2. This is the first report for the pharmacokinetics and intestinal absorption of PR-GR, which may explain their synergetic effects in the treatment of circulatory systematic diseases and provide a meaningful insight for their clinical applications.


Assuntos
Medicamentos de Ervas Chinesas/farmacocinética , Gastrodia/química , Absorção Intestinal/fisiologia , Isoflavonas/farmacocinética , Pueraria/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Íleo/metabolismo , Isoflavonas/análise , Limite de Detecção , Modelos Lineares , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
15.
Biomed Chromatogr ; 33(3): e4421, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30362136

RESUMO

Diarrhoeal diseases alter the composition of intestinal flora, thereby affecting the efficacy of herbal medicinal formulations. Gegen Qinlian decoction (GQD), a Chinese traditional herbal formulation, is widely used to treat infectious diarrhoea. However, little is known about the microbial disposition of GQD in the diarrhoeal state. In this study, the comparative metabolism of components of GQD by diarrhoeal and normal intestinal flora was investigated in vitro. UPLC-MS/MS was performed for simultaneous analysis of eight ingredients of GQD in bacterial solution. The type, activities, and sources of microbial enzymes were also investigated. Microbial metabolism of daidzin, genistin and liquiritin (metabolized by ß-glucosidase); baicalin, wogonoside and glycyrrhizin (metabolized by ß-glucuronidase); and berberine and coptisine (metabolized via nitroreductase) was faster in the diarrhoeal group than in the normal group. Moreover, the activities of these enzymes in the diarrhoeal group were higher than those in the normal group. This difference might be associated with the increase in Escherichia spp. Thus, a change in the metabolism of components by diarrhoeal intestinal flora is associated with a preponderance of Escherichia spp., which might improve the efficacy of GQD. These findings have implications for understanding the action mechanism of GQD for diarrhoea treatment in terms of the microbial milieu.


Assuntos
Bactérias/metabolismo , Diarreia/microbiologia , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Bactérias/enzimologia , Berberina/análise , Berberina/metabolismo , Medicamentos de Ervas Chinesas/química , Flavonoides/análise , Flavonoides/metabolismo , Ácido Glicirrízico/análise , Ácido Glicirrízico/metabolismo , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos
16.
Artigo em Inglês | MEDLINE | ID: mdl-29525365

RESUMO

Intestinal condition plays an important role in drug absorption and metabolism, thus the effects of varied gastrointestinal diseases such as infectious diarrhea on the intestinal function are crucial for drug absorption. However, due to the lack of suitable models, the differences of absorption and metabolism of drugs between the diarrheal and normal intestines are rarely reported. Thus, in this study, Escherichia coli diarrhea model was induced in mini-pigs and single-pass intestinal perfusion and intestinal mucosal enzyme metabolism experiments were conducted. A simple and rapid ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to determine the concentrations of 9 major components in Gegen Qinlian decoction (GQD). Samples were pretreated by protein precipitation with methanol and naringin and prednisolone were used as internal standards. The validated method demonstrated adequate sensitivity, selectivity, and process efficiency for the bioanalysis of 9 compounds. Results of intestinal perfusion showed that puerarin, daidzein, daidzin and baicalin and berberine were absorbed faster in diarrheal jejunum than in normal intestines (p < 0.05). However, puerarin, daidzin and liquiritin were metabolized more slowly in diarrheal intestine after incubation compared with the normal group (p < 0.05). The concentrations of daidzein in both perfusion and metabolism and wogonin in metabolism were significantly increased (p < 0.05). In conclusion, absorption and metabolism of GQD were significantly different between the diarrheal and normal intestines, which suggest that bacterial diarrheal mini-pigs model can be used in the intestinal absorption study and is worthy to be applied in the other intestinal absorption study of anti- diarrheal drugs.


Assuntos
Diarreia/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Flavonoides/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Intestino Delgado/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacologia , Intestino Delgado/química , Modelos Lineares , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos , Porco Miniatura , Espectrometria de Massas em Tandem/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-28947910

RESUMO

Puerariae Lobatae Radix, known as Gegen in Chinese, is widely used to treat cardiovascular diseases, diabetes, and many other chronic illnesses. Flavonoids are the main active components in Gegen and are found in high concentrations in soybeans. Few studies, however, have focused on the effects of flavonoid-rich food on the absorption of Gegen. Here, we report an in vivo pharmacokinetic study on rats to explore the effects of soybean milk on the absorption of Gegen and an in vitro Ussing chamber study of puerarin intestinal transmembrane absorption. Area under the plasma concentration-time curve (AUC0-t ) and maximum plasma concentration (Cmax) values of puerarin in rats were significantly decreased after drinking soybean milk, when taking Gegen decoction or a Gegen patent medicine (P < 0.01). In the Ussing chamber experiment, cumulative transmission (Qtn) after 2 h and apparent permeability coefficient (Papp) were lower in the puerarin-daidzin and puerarin-soybean milk solution groups than in the puerarin group. Daidzin in soybean milk inhibited the transmembrane transport of puerarin, resulting in decreased bioavailability of puerarin in Gegen. The results of this study strongly suggest that Gegen should not be taken with flavonoid-rich food, particularly soybean products.

18.
J Immunol Res ; 2017: 8254324, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785597

RESUMO

Allergic rhinitis (AR) is one of the most common allergic diseases, which adversely affect patients' quality of life. Mahuang Fuzi Xixin decoction (MFXD) has been widely used to treat AR in clinics in Asian countries. This study investigated the effect and possible therapeutic mechanisms of MFXD in the treatment of AR. A Wistar rat model of ovalbumin- (OVA-) induced AR was established and then treated with three doses of MFXD; AR symptoms, serum total immunoglobulin E, histamine, histopathological features, and release and expression of factors related to type 1 helper T (Th1) and type 2 helper T (Th2) responses were analyzed. Our study demonstrated that MFXD has a good therapeutic effect on OVA-induced allergic inflammation in an AR rat model as manifested in reduced frequencies of sneezing and nasal scratching and in reduced serum levels of total IgE and HIS. In addition, MFXD regulates imbalance in Th1/Th2 cells caused by AR by simultaneously attenuating Th1 and Th2 responses, such as by reducing the serum levels of IFN-γ and IL-4 and mRNA expression levels of IFN-γ, IL-4, GATA-3, and STAT-6. This study provided valuable information on the immunoregulatory effect of MFXD for the treatment of AR in future clinical studies.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Rinite Alérgica/tratamento farmacológico , Rinite Alérgica/imunologia , Células Th1/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Animais , Citocinas/efeitos dos fármacos , Citocinas/genética , Modelos Animais de Doenças , Feminino , Histamina/sangue , Imunoglobulina E/sangue , Interleucina-4/sangue , Ovalbumina , Fitoterapia , Ratos , Ratos Wistar , Rinite Alérgica/induzido quimicamente , Rinite Alérgica/fisiopatologia , Equilíbrio Th1-Th2/efeitos dos fármacos
19.
Chin J Integr Med ; 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28755076

RESUMO

OBJECTIVE: To investigate the pharmacokinetic characteristics of three phenylpropanoids (cinnamic acid, cinnamic alcohol and coumarin) in Ramulus Cinnamomi (GZ) and Ramulus Cinnamomi-Ephedrae Herba (MH) herb-couple (GZMH). METHODS: Twelve male Sprague-Dawley rats were randomly and equally divided into the GZ and GZMH herb-couple groups. Blood samples were collected at 0, 0.08, 0.25, 0.5, 0.75, 1.5, 3, 4, 6, 8, 12, 24, 36 and 48 h after oral administration. The three phenylpropanoids in rat plasma were quantified using an ultra-performance liquid-chromatography with tandem mass spectrometry (UPLC-MS/MS) method for pharmacokinetic study. RESULTS: In GZMH group, the area under the curve (AUC), mean retention time (MRT) of cinnamic acid and coumarin were increased significantly (P<0.01, respectively), and biological half-life (t1/2z) was obviously shorter (P<0.05) compared with the GZ group. There were no significant differences in the mean retention time from 0 to ∞ (MRT0-∞), the peak concentration (Cmax), the time to peak (Tmax) and t1/2z, except for AUC and MRT0-t (the mean retention time from 0 to t) of cinnamic alcohol in the GZMH group by comparison to the GZ group (P<0.01, respectively). The AUC, MRT (both P<0.01) and t1/2z (P<0.05) of coumarin were increased significantly, while Cmax, and Tmax were decreased slightly by comparison to the GZ group (P>0.05). CONCLUSIONS: There were statistically significant differences in some pharmacokinetic parameters of the three compounds between GZ and GZMH groups, which meant that MH could affect the absorption and elimination of the three compounds.

20.
Biomed Chromatogr ; 31(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28236316

RESUMO

Wogonin and oroxylin A in Scutellariae Radix, schisandrin in Chinensis Fructus, paeoniflorin in Moutan Cortex and emodin in Polygoni Cuspidate Rhizome et Radix are anti-inflammatory active compounds. A method for simultaneous determination of the five compounds in rat was developed and validated using high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The separation was performed on a Symmetry C18 column (4.6 × 50 mm, 3.5 µm) with acetonitrile and 0.1% formic acid aqueous solution as the mobile phases. The detection was performed using multiple-reaction monitoring with electrospray ionization source in positive-negative ion mode. The calibration curves showed good linearity (r ≥ 0.9955). The lower limit of quantification (LLOQ) was 5 ng/mL for wogonin and schisandrin, 10 ng/mL for oroxylin A and emodin, and 15 ng/mL for paeoniflorin, respectively. The relative standard deviations of intraday and interday precisions were <11.49 and 14.28%, respectively. The extraction recoveries and matrix effects were acceptable. The analytes were stable under the experiment conditions. The validated method has been successfully applied to pharmacokinetic studies of the five compounds in rats after oral administration of Hu-gan-kan-kang-yuan capsule. This paper would be a valuable reference for pharmacokinetic studies of Chinese medicine preparations containing the five compounds.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ciclo-Octanos/sangue , Emodina/sangue , Flavanonas/sangue , Flavonoides/sangue , Glucosídeos/sangue , Lignanas/sangue , Monoterpenos/sangue , Compostos Policíclicos/sangue , Animais , Ciclo-Octanos/química , Ciclo-Octanos/farmacocinética , Medicamentos de Ervas Chinesas , Emodina/química , Emodina/farmacocinética , Feminino , Flavanonas/química , Flavanonas/farmacocinética , Flavonoides/química , Flavonoides/farmacocinética , Glucosídeos/química , Glucosídeos/farmacocinética , Lignanas/química , Lignanas/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Monoterpenos/química , Monoterpenos/farmacocinética , Compostos Policíclicos/química , Compostos Policíclicos/farmacocinética , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA