Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34679694

RESUMO

Warburgia ugandensis Sprague (WU) is a traditional medicinal plant used for the treatment of various diseases, including cancer, in Africa. This study aimed to evaluate the anti-non-small cell lung cancer (NSCLC) activities of WU against A549 cells and to reveal potential molecular mechanisms. The cytotoxicity of various WU extracts was evaluated with HeLa (cervical cancer), HepG2 (liver cancer), HT-29 (colorectal cancer), and A549 (non-small cell lung cancer) cells by means of Sulforhodamine B (SRB) assay. Therein, the dimethyl carbonate extract of WU (WUD) was tested with the most potent anti-proliferative activity against the four cancer cell lines, and its effects on cell viability, cell cycle progression, DNA damage, intracellular reactive oxygen species (ROS), and expression levels of G0/G1-related proteins in A549 cells were further examined. First, it was found that WUD inhibited the proliferation of A549 cells in a time- and dose-dependent manner. In addition, WUD induced G0/G1 phase arrest and modulated the expression of G0/G1 phase-associated proteins Cyclin D1, Cyclin E1, and P27 in A549 cells. Furthermore, WUD increased the protein abundance of P27 by inhibiting FOXO3A/SKP2 axis-mediated protein degradation and also significantly induced the γH2AX expression and intracellular ROS generation of A549 cells. It was also found that the inhibitory effect of WUD on the proliferation and G0/G1 cell cycle progression of A549 cells could be attenuated by NAC, a ROS scavenger. On the other hand, phytochemical analysis of WUD with UPLC-QTOF-MS/MS indicated 10 sesquiterpenoid compounds. In conclusion, WUD exhibited remarkable anti-proliferative effects on A549 cells by improving the intracellular ROS level and by subsequently modulating the cell proliferation and G0/G1 cell cycle progression of A549 cells. These findings proved the good therapeutic potential of WU for the treatment of NSCLC.

2.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804242

RESUMO

Ficus glumosa Delile (Moraceae), a reputed plant that is used in herbal medicine, is of high medicinal and nutritional value in local communities primarily ascribed to its phytochemical profile. Currently, there are hardly any fine details on the chemical profiling and pharmacological evaluation of this species. In this study, the flavonoids and phenolics contents of the ethanol extracts and four extracted fractions (petroleum ether (PE), ethyl acetate (EA), n-butanol, and water) of the stem bark of Ficus glumosa were firstly quantified. Further, their antioxidant and antiproliferative potentials were also evaluated. The quantitative determination indicated that the EA and n-butanol fractions possessed the highest total flavonoids/phenolics levels of 274.05 ± 0.68 mg RE/g and 78.87 ± 0.97 mg GAE/g, respectively. Similarly, for the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric-reducing antioxidant power (FRAP) assays, the EA fraction exhibited high potency in both DPPH and ABTS+ scavenging activities with IC50 values of 0.23 ± 0.03 mg/mL, 0.22 ± 0.03 mg/mL, and FRAP potential of 2.81 ± 0.01 mg Fe2+/g, respectively. Furthermore, the EA fraction displayed high cytotoxicity against human lung (A549) and colon (HT-29) cancer cells. Additionally, the liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was employed in order to characterize the chemical constituents of the EA fraction of Ficus glumosa stem bark. Our findings revealed 16 compounds from the EA fraction that were possibly responsible for the strong antioxidant and anti-proliferative properties. This study provides edge-cutting background information on the exploitation of Ficus glumosa as a potential natural antioxidant and anti-cancer remedy.

3.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915848

RESUMO

Previous reports have illustrated that the incidence and mortality of cancer are increasing year by year worldwide. In addition, the occurrence, development, recurrence and metastasis of cancer are closely related to inflammation, which is a kind of defensive response of human body to various stimuli. As an important medicinal plant in Africa, Warburgia ugandensis has been reported to have certain anti-inflammatory and anti-proliferative activities, but its specific components and mechanisms of action remain elusive. To tackle this challenge, affinity ultrafiltration with drug targets of interest coupled to high-performance liquid chromatography-mass spectrometry (AUF-HPLC-MS/MS) could be utilized to quickly screen out bioactive constituents as ligands against target enzymes from complex extracts of this plant. AUF-HPLC-MS/MS with four drug targets, i.e., cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), topoisomerase I (Top I) and topoisomerase II (Top II) were used to rapidly screen and characterize the anti-inflammatory and anti-proliferative natural ligands from W. ugandensis, and the resulting potential active compounds as ligands with specific binding affinity to COX-2, 5-LOX, Top I and Top II, were isolated with modern separation and purification techniques and identified with spectroscopic method like NMR, and then their antiinflammatory and anti-proliferative activities were tested to verify the screening results from AUF-HPLC-MS/MS. Compounds 1 and 2, which screened out and identified from W. ugandensis showed remarkable binding affinity to COX-2, 5-LOX, Top I and Top II with AUF-HPLC-MS/MS. In addition, 1 new compound (compound 3), together with 5 known compounds were also isolated and identified from W. ugandensis. The structure of compound 3 was elucidated by extensive 1D, 2D NMR data and UPLC-QTOF-MS/MS. Furthermore, compounds 1 and 2 were further proved to possess both anti-inflammatory and anti-proliferative activities which are in good agreement with the screening results using AUF-HPLC-MS/MS. This work showcased an efficient method for quickly screening out bioactive components with anti-inflammatory and anti-proliferative activity from complex medicinal plant extracts using AUF-HPLC-MS/MS with target enzymes of interest, and also demonstrated that neolignanamides (compounds 1 and 2) from W. ugandensis would be the active components responsible for its anti-inflammatory and anti-proliferative activity with the potential to treat cancer and inflammation.

4.
Food Chem ; 333: 127478, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663752

RESUMO

Moringa oleifera Lam. (M. oleifera) leaves have long been consumed as both nutritive vegetable and popular folk medicine for hyperglycemia and hyperlipidemia in Kenya communities. In the current study, in vitro inhibition by M. oleifera leaf extract (MOLE, 90% (v/v) ethanol) of α-glucosidase and pancreatic lipase was demonstrated, followed by determination of the effects of MOLE on both glucose consumption and lipid levels (TC, TG, HDL-C and LDL-C) in 3T3-L1 cells. Potential ligands in MOLE were fast screened using affinity ultrafiltration LC-MS, and 14 and 10 components displayed certain binding affinity to α-glucosidase and pancreatic lipase, respectively. Docking studies revealed the binding energies and hydrogen bonds between potential ligands and enzymes. This study suggests that M. oleifera leaves may be a promising natural source for the prevention and treatment of hyperglycemia and hyperlipidemia as well as a functional food or other product for health care in the near future.


Assuntos
Moringa oleifera/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Células 3T3-L1 , Animais , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Lipase/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos
5.
Pharmaceuticals (Basel) ; 13(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225055

RESUMO

Rhamnus prinoides L'Herit (R. prinoides) has long been widely consumed as folk medicine in Kenya and other Africa countries. Previous studies indicated that polyphenols were abundant in genus Rhamnus and exhibited outstanding antioxidant and anti-inflammatory activities. However, there are very few studies on such pharmacological activities and the polyphenol profile of this plant up to now. In the present study, the antioxidant activities of the crude R. prinoides extracts (CRE) and the semi-purified R. prinoides extracts (SPRE) of polyphenol enriched fractions were evaluated to show the strong radical scavenging effects against 1,1-diphenyl-2- picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) (0.510 ± 0.046 and 0.204 ± 0.005, mg/mL), and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) (0.596 ± 0.005 and 0.096 ± 0.004, mg/mL), respectively. Later, the SPRE with higher contents of polyphenols and flavonoids displayed obvious anti-inflammatory activities through reducing the NO production at the dosage of 11.11 - 100 µg/mL, and the COX-2 inhibitory activity with an IC50 value at 20.61 ± 0.13 µg/mL. Meanwhile, the HPLC-UV/ESI-MS/MS analysis of polyphenol profile of R. prinoides revealed that flavonoids and their glycosides were the major ingredients, and potentially responsible for its strong antioxidant and anti-inflammatory activities. For the first time, the present study comprehensively demonstrated the chemical profile of R. prinoides, as well as noteworthy antioxidant and anti-inflammatory activities, which confirmed that R. prinoides is a good natural source of polyphenols and flavonoids, and provided valuable information on this medicinal plant as folk medicine and with good potential for future healthcare practice.

6.
Antioxidants (Basel) ; 8(8)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31404978

RESUMO

Moringa oleifera Lam. (M. oleifera) is commonly distributed and utilized in tropical and sub-tropical areas. There has been a large number of reports on the antioxidant and anti-inflammatory activity of its leaves, but only a few about its seeds and roots. Hence, in this work we aimed to systematically compare the antioxidant and anti-inflammatory activities of the ethanol crude extracts of leaves, seeds, and roots of M. oleifera from Kenya, and further correlate the differential activities with the chemical constituents from these three parts. The antioxidant activities were measured by using three different assays (DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) and FRAP (Ferric-Reducing Antioxidant Power), respectively). Results showed that the leaf extracts displayed the highest DPPH radical scavenging and FRAP total reducing power activities with IC50 values of 1.02 ± 0.13 mg/mL and 0.99 ± 0.06 mM Fe2+/g, respectively; the leaf and root extracts exhibited potential ABTS radical scavenging activities with the IC50 values of 1.36 ± 0.02 and 1.24 ± 0.03 mg/mL. Meanwhile, the leaf and seed extracts (11.1-100 µg/mL) also exerted obvious anti-inflammatory activities, as indicated by the inhibition of NO production. To further reveal correlations between these differential activities with the chemical constituents in the three organs, the total flavonoids content (TFC) of the three different extracts were evaluated, and the TFC of leaves, seeds and roots were found to be 192.36 ± 2.96, 5.89 ± 0.65 and 106.79 ± 2.12 mg rutin equivalent (RE)/g, respectively. These findings indicated the important impacts of the total flavonoid contents on antioxidant and anti-inflammatory activities. Additionally, we further determined the phytochemical profiles of M. oleifera by HPLC-UV/ESI-MS/MS, and identified most of the chemical constituents of leaves as flavonoids. In summary, the leaves of M. oleifera are a better potential natural source of antioxidants and anti-inflammatory agents, and very promising for development into the health promoting dietary supplements.

7.
Food Chem ; 277: 706-712, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30502207

RESUMO

The antioxidant and anti-inflammatory mechanisms of action of flavonoids in lotus plumule were systematically analyzed using radical scavenging assays and ELISA kits. By this means, flavonoids displayed significant antioxidant activity by donating electron, H atom as well as capturing DPPH and ABTS+ free radicals, and anti-inflammatory effect by inhibiting the production of the inflammatory mediators (NO radicals, PGE2 and TNF-α) and pro-inflammatory cytokines (IL-1ß and IL-6). Meanwhile, the bioactive components against inflammation targeting COX-2 were also revealed using ultrafiltration coupled to LC-MS (UF-LC/MS). In this way, 12 components showing specific binding to COX-2 were screened out and identified. The structure-activity relationships suggested that flavonoids O-glycosides displayed comparable binding affinities to COX-2 compared with flavonoids C-glycosides and could be considered as the main active components. This study will provide valuable information for the further exploration of lotus plumule as functional foods or in pharmaceutical industries in the near future.


Assuntos
Anti-Inflamatórios/química , Antioxidantes/química , Flavonoides/química , Lotus/metabolismo , Animais , Antioxidantes/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Flavonoides/metabolismo , Glicosídeos/química , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lotus/química , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Extratos Vegetais/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo , Ultrafiltração
8.
Phytochem Anal ; 29(4): 365-374, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29687660

RESUMO

INTRODUCTION: Medicinal plants are gaining increasing attention worldwide due to their empirical therapeutic efficacy and being a huge natural compound pool for new drug discovery and development. The efficacy, safety and quality of medicinal plants are the main concerns, which are highly dependent on the comprehensive analysis of chemical components in the medicinal plants. With the advances in mass spectrometry (MS) techniques, comprehensive analysis and fast identification of complex phytochemical components have become feasible, and may meet the needs, for the analysis of medicinal plants. OBJECTIVE: Our aim is to provide an overview on the latest developments in MS and its hyphenated technique and their applications for the comprehensive analysis of medicinal plants. METHODOLOGY: Application of various MS and its hyphenated techniques for the analysis of medicinal plants, including but not limited to one-dimensional chromatography, multiple-dimensional chromatography coupled to MS, ambient ionisation MS, and mass spectral database, have been reviewed and compared in this work. RESULTS: Recent advancs in MS and its hyphenated techniques have made MS one of the most powerful tools for the analysis of complex extracts from medicinal plants due to its excellent separation and identification ability, high sensitivity and resolution, and wide detection dynamic range. CONCLUSION: To achieve high-throughput or multi-dimensional analysis of medicinal plants, the state-of-the-art MS and its hyphenated techniques have played, and will continue to play a great role in being the major platform for their further research in order to obtain insight into both their empirical therapeutic efficacy and quality control.


Assuntos
Espectrometria de Massas/métodos , Plantas Medicinais/química , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Microfluídica/instrumentação , Extração em Fase Sólida
9.
Zhongguo Zhong Yao Za Zhi ; 40(18): 3543-8, 2015 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-26983197

RESUMO

By a orthogonal experiment, the influence of different ratio of phosphorus and potassium fertilizers on imperatorin, isoimperatorin and psoralen contents and yield of Glehnia littoralis were studied. The results showed that root dry weight and the yield of G. littoralis increased when reasonably applied phosphorus fertilizer combined with potassium fertilizer within a certain range. And the influence of phosphorus fertilizer was greater than that of potassium fertilizer. The optimal value of root dry weight and yield achieved at both P2O5 360 kg x hm(-2), K2O 270 kg x hm(-2) and P2O5 360 kg x hm(-2), K2O 180 kg x hm(-2). The effects of different phosphorus and potassium treatments on the content of imperatorin, isoimperatorin and psoralen in G. littoralis were determined, which shows that the content increased with the moderate increase of phosphorus and potassium. And the effects of phosphorus fertilizer were more significantly. The isoimperatorin content achieved the largest value at P2O5 360 kg x hm(-2), K2O 270 kg x hm(-2), also a larger content of imperatorin and psoralen. The imperatorin content is the largest when applied P2O5 360 kg x hm(-2), K2O 180 kg x hm(-2), and the isoimperatorin content was higher as well. So that the treatment of P2O5 360 kg x hm(-2), K2O 180 kg x hm(-2) are suitable for promote to the agricultural production, which could improve the quality and yield of G. littoralis.


Assuntos
Apiaceae/química , Cumarínicos/análise , Medicamentos de Ervas Chinesas/análise , Fertilizantes/análise , Fósforo/análise , Potássio/análise , Agricultura , Apiaceae/crescimento & desenvolvimento , Apiaceae/metabolismo , Cumarínicos/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Fósforo/metabolismo , Potássio/metabolismo
10.
J Food Sci ; 77(10): C1097-102, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22938385

RESUMO

UNLABELLED: The apple-shaped pear, the fruit of the Pyrus pyrifolia cv. pingguoli (Rosaceae) tree, is one of the most popular fruits in the northern part of China. The current study is the 1st report of its bioactive components. We identified 10 metabolites from the peels (exocarp) of apple-shaped pear and assessed their toxicity. We then compared the anti-oxidant activity, amount of total phenolic compounds, and total condensed tannin content of the peels and flesh (mesocarp) of apple-shaped pear. The 6 major components in the peels and flesh of this fruit were quantified with Ultra Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry. Results revealed that the peels possessed stronger anti-oxidant activity and contained larger amounts of phenolic compounds than the flesh. These results provide insights into the potential health benefits of this fruit and support the use of the fruit peels and products containing peels or peel components. PRACTICAL APPLICATION: The present research provided evidences that the pulp and peel waste from the juice industry of apple-shaped pear may be a source of useful compounds.


Assuntos
Antioxidantes/análise , Frutas/química , Pyrus/química , Bebidas/análise , China , Fenóis/análise , Extratos Vegetais/análise , Espectrometria de Massas por Ionização por Electrospray , Taninos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA