Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomaterials ; 307: 122511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401482

RESUMO

Combination of different therapies is an attractive approach for cancer therapy. However, it is a challenge to synchronize different therapies for maximization of therapeutic effects. In this work, a smart composite scaffold that could synchronize magnetic hyperthermia and chemotherapy was prepared by hybridization of magnetic Fe3O4 nanoparticles and doxorubicin (Dox)-loaded thermosensitive liposomes with biodegradable polymers. Irradiation of alternating magnetic field (AMF) could not only increase the scaffold temperature for magnetic hyperthermia but also trigger the release of Dox for chemotherapy. The two functions of magnetic hyperthermia and chemotherapy were synchronized by switching AMF on and off. The synergistic anticancer effects of the composite scaffold were confirmed by in vitro cell culture and in vivo animal experiments. The composite scaffold could efficiently eliminate breast cancer cells under AMF irradiation. Moreover, the scaffold could support proliferation and adipogenic differentiation of mesenchymal stem cells for adipose tissue reconstruction after anticancer treatment. In vivo regeneration experiments showed that the composite scaffolds could effectively maintain their structural integrity and facilitate the infiltration and proliferation of normal cells within the scaffolds. The composite scaffold possesses multi-functions and is attractive as a novel platform for efficient breast cancer therapy.


Assuntos
Doxorrubicina/análogos & derivados , Hipertermia Induzida , Neoplasias , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Hipertermia , Fenômenos Magnéticos , Polietilenoglicóis
2.
Adv Healthc Mater ; 12(9): e2202604, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36534783

RESUMO

Postsurgical treatment of breast cancer remains a challenge with regard to killing residual cancer cells and regenerating breast defects. To prepare composite scaffolds for postoperative use, gelatin is chemically modified with folic acid (FA) and used for hybridization with citrate-modified Fe3 O4 nanoparticles (Fe3 O4 -citrate NPs) to fabricate Fe3 O4 /gelatin composite scaffolds which pore structures are controlled by free ice microparticles. The composite scaffolds have large spherical pores that are interconnected to facilitate cell entry and exit. The FA-functionalized composite scaffolds have the ability to capture breast cancer cells. The Fe3 O4 /gelatin composite scaffolds possess a high capacity for magnetic-thermal conversion to ablate breast cancer cells during alternating magnetic field (AMF) irradiation. In addition, the composite scaffolds facilitate the growth and adipogenesis of mesenchymal stem cells. The composite scaffolds have multiple functions for eradication of residual cancer cells under AMF irradiation and for regeneration of resected adipose tissue when AMF is off.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanopartículas , Humanos , Feminino , Gelatina , Neoplasias da Mama/terapia , Neoplasia Residual , Nanopartículas/química , Fenômenos Magnéticos , Alicerces Teciduais
3.
Biomater Sci ; 10(24): 7042-7054, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36310532

RESUMO

In recent years, the synergistic effect of photothermal therapy (PTT) and chemotherapy has been recognized as an effective strategy for cancer treatment. Controlling the PTT temperature and drug release profile is desirable for minimizing the unexpected damage to normal cells. In this study, a smart platform of stepwise PTT and chemotherapy has been developed by using composite porous scaffolds of biodegradable black phosphorus (BP) nanosheets, gold nanorods(AuNRs), doxorubicin (Dox)-encapsulated thermosensitive liposomes and biodegradable polymers. Under near-infrared (NIR) laser irradiation, the composite scaffolds could attain high and low local temperatures before and after BP degradation, respectively. Dox release from the composite scaffolds could be controlled by the temperature change. In vitro cell culture and in vivo animal experiments indicated that a strong synergistic effect of PTT and chemotherapy could be achieved at an early stage of treatment before BP degradation, and a mild hyperthermia effect was shown for chemotherapy in the late stage after BP degradation. Moreover, the composite scaffolds after the complete release of Dox could support the proliferation of mesenchymal stem cells. The composite scaffolds showed a synergistic effect of stepwise PTT and chemotherapy for breast cancer elimination and promoted stem cell activities after killing cancer cells.


Assuntos
Nanopartículas Metálicas , Terapia Fototérmica , Ouro , Gelatina , Fósforo , Doxorrubicina/farmacologia
4.
Biomater Adv ; 138: 212938, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913234

RESUMO

Photothermal nanoparticles are important in photothermal therapy. Combining different nanoparticles can achieve a high photothermal capacity. In this study, composite nanoparticles composed of black phosphorus nanosheets (BPNSs) and gold nanostars (BP-AuNSs) were synthesized by using BPNSs as the reductant. AuNSs were deposited on the BPNSs. The BP-AuNSs were further hybridized with porous gelatin scaffolds to prepare gelatin-BP-AuNS composite scaffolds. The gelatin-BP-AuNS composite scaffolds promoted cell migration and distribution. The synergistic effects of the BPNSs and AuNSs endowed the gelatin-BP-AuNS composite scaffolds with excellent photothermal properties. The gelatin-BP-AuNS composite scaffolds eliminated cancer cells after near infrared laser exposure and supported the adipogenic differentiation of human mesenchymal stem cells. Thus, this gelatin-BP-AuNS composite scaffold holds promise for breast cancer therapy.


Assuntos
Gelatina , Neoplasias , Diferenciação Celular , Ouro , Humanos , Neoplasias/terapia , Fósforo , Células-Tronco
5.
J Mater Chem B ; 10(2): 204-213, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34935026

RESUMO

The treatment of melanoma requires not only the elimination of skin cancer cells but also skin regeneration to heal defects. To achieve this goal, a bifunctional composite scaffold of poly(DL-lactic-co-glycolic acid) (PLGA), collagen and black phosphorus nanosheets (BPNSs) was prepared by hybridizing a BPNS-embedded collagen sponge with a PLGA knitted mesh. The composite mesh increased the temperature under near-infrared laser irradiation. The incorporation of BPNSs provided the PLGA-collagen-BPNS composite mesh with excellent photothermal properties for the photothermal ablation of melanoma cells both in vitro and in vivo. The PLGA-collagen-BPNS composite mesh had high mechanical strength for easy handling. The PLGA-collagen-BPNS composite mesh facilitated the proliferation of fibroblasts, promoted the expression of angiogenesis-related genes and the genes of components of the extracellular matrix for skin tissue regeneration. The high mechanical strength, photothermal ablation capability and skin tissue regeneration effects demonstrate that the bifunctional PLGA-collagen-BPNS composite mesh is a versatile and effective platform for the treatment of melanoma and the regeneration of skin defects.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Fósforo/uso terapêutico , Regeneração/efeitos dos fármacos , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Alicerces Teciduais/química , Animais , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Colágeno/química , Feminino , Humanos , Raios Infravermelhos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Nanoestruturas/uso terapêutico , Fósforo/química , Fósforo/efeitos da radiação , Terapia Fototérmica/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Engenharia Tecidual/métodos
6.
Biomaterials ; 275: 120923, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098151

RESUMO

Breast cancer treatment needs to eradicate cancer cells and restore breast defects after surgical intervention. Herein, bifunctional composite scaffolds of black phosphorus nanosheets (BPNSs) and gelatin were designed to kill breast cancer cells and induce adipose tissue reconstruction. The composite scaffolds were prepared by hybridizing photothermal BPNSs with porous gelatin matrices by adding pre-prepared ice particles to precisely adjust their pore structures. The composite scaffolds had large, well-interconnected spherical pores, which allowed cell migration and infiltration. Hybridization with BPNSs increased the compression strength of the scaffolds. The composite scaffolds possessed a high photothermal conversion capacity that was dependent on the amount of BPNSs. The composite scaffold with a high amount of BPNSs could completely kill breast cancer cells in vitro and in vivo under laser irradiation. Moreover, cell culture and animal experiment results showed that the composite scaffolds promoted lipid oil droplet formation and upregulated the expression of adipogenesis-related genes when hMSCs were cultured in the scaffolds. The composite scaffolds could offer a facile platform to exert anticancer effects against breast cancer cells and promote the reconstruction of adipose tissue.


Assuntos
Neoplasias , Engenharia Tecidual , Tecido Adiposo , Animais , Gelatina , Fósforo , Porosidade , Alicerces Teciduais
7.
ACS Appl Mater Interfaces ; 9(48): 41782-41793, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29148694

RESUMO

Large-size-induced long-term retention in the body has hampered the translational applications of many reported nanomedicines. Herein, we reported a multifunctional theranostic agent composed of ultrasmall poly(acrylic acid)-functionalized Ni0.85Se nanoparticles (PAA-Ni0.85Se NPs), which were successfully obtained through a facile ambient aqueous precipitation strategy. Without exhibiting any noticeable toxicity, the as-prepared PAA-Ni0.85Se NPs (average diameter of 6.40 ± 1.89 nm) showed considerable absorption in near-infrared (NIR) region and high photothermal conversion efficiency of 54.06%, which could induce remarkable photoacoustic signals for tumor imaging and heat for localized ablation of cancerous cells upon exposure to NIR light. Notably, the ultrasmall PAA-Ni0.85Se NPs, unlike conventional nanomaterials with larger sizes, showed reasonable body clearance within 8 h after intravenous injection. Furthermore, ascribed to protonation process of amino groups in DOX molecules and carboxyl groups in PAA molecules in an acidic microenvironment, the drug-loaded (doxorubicin hydrochloride, DOX·HCl) PAA-Ni0.85Se NPs (PAA-Ni0.85Se-DOX NPs) revealed promoted drug release at acidic pH, which could be useful for acidic tumor microenvironment responsive drug delivery. Evident from the results of cell-killing assay in vitro and tumor treatment study in vivo, PAA-Ni0.85Se-DOX NPs exhibited evident synergistic effects on killing 4T1 breast cancer cells. Thus, this study presents a multifunctional theranostic agent composed of ultrasmall PAA-Ni0.85Se NPs for potential cancer treatment without long-term toxicity concerns.


Assuntos
Nanopartículas , Doxorrubicina , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias , Níquel , Técnicas Fotoacústicas , Selênio
8.
Nanoscale ; 9(38): 14512-14519, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28930346

RESUMO

Developing a facile and reliable method for the fabrication of transition metal chalcogenides is a vital and endless pursuit of scientific and technological disciplines. In this work, we develop a one-pot solution approach to obtain copper selenide nanostructures with different morphologies and crystal structures (Cu2Se nanoparticles, CuSe nanoplates and CuSe2 nanosheets). In comparison to previously reported methods, our method did not use expensive and very toxic raw materials. After detailed studies of reaction conditions, including temperature, reaction time, and feeding amount of surfactants and precursors, we found that the feeding ratio of precursors played a key role in the crystal structures and morphologies of the final products. Moreover, as a proof-of-concept study, the potential applications of the as-prepared copper selenide nanostructures in the photocatalytic discoloration of aqueous methylene blue (MB) under visible light irradiation and near-infrared (NIR) light induced photothermal therapy for cancer treatment were investigated. Encouraged by their strong photocatalytic activities and high photothermal conversion efficiencies (calculated to be 51.0%, 49.5% and 48.9% for Cu2Se nanoparticles, CuSe nanoplates and CuSe2 nanosheets, respectively), we believe that copper selenide nanostructures fabricated from the one-pot solution approach developed in this work would be promising candidates for a wide variety of emerging applications.


Assuntos
Cobre , Nanopartículas Metálicas , Fototerapia , Compostos de Selênio , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Luz , Nanoestruturas , Temperatura
9.
Colloids Surf B Biointerfaces ; 152: 449-458, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28187379

RESUMO

Recently, combined photothermal-chemo therapy has attracted great attention due to its enhanced anti-tumor efficiency via synergistic effects. Herein, PEGylated cuprous telluride nanocrystals (PEGylated Cu2Te NCs) were developed as novel drug nanocarriers for combined photothermal-chemo treatment of cancer cells. PEGylated Cu2Te NCs were fabricated through a simple two-step process, comprised of hot injection and thin-film hydration. The as-prepared PEGylated Cu2Te NCs (average diameter of 5.21±1.05nm) showed a noticeable photothermal conversion efficiency of 33.1% and good capacity to load hydrophobic anti-cancer drug. Due to the protonated amine group at low pH, the doxorubicin (DOX)-loaded PEGylated Cu2Te NCs (PEGylated Cu2Te-DOX NCs) exhibited an acidic pH promoted drug release profile. Moreover, a three-parameter model, which considers the effects of drug-carrier interactions on the initial burst release and the sustained release of drug from micro- and nano-sized carriers, was used to gain insight into how pH and laser irradiation affect drug release from PEGylated Cu2Te-DOX NCs. Based on the results from in vitro cell study, PEGylated Cu2Te-DOX NCs revealed remarkably photothermal-chemo synergistic effect to HeLa cells, attributed to both the PEGylated Cu2Te NCs mediated photothermal ablation and enhanced cellular uptake of the drug. Thus, our results encourage the usage of Cu2Te-DOX drug nanocarriers for enhanced treatment of cancer cells by combined photothermal-chemo therapy.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Polietilenoglicóis/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Doxorrubicina/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Fototerapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA