Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomedicines ; 12(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275421

RESUMO

Adolescent idiopathic scoliosis (AIS) is a three-dimensional spinal deformity that is associated with low bone mineral density (BMD). Vitamin D (Vit-D) supplementation has been suggested to improve BMD in AIS, and its outcomes may be related to genetic factors. The present study aimed to (a) investigate the synergistic effect between a low BMD-related gene (wingless-related integration site 16, WNT16) and two important Vit-D pathway genes (Vit-D receptor, VDR, and Vit-D binding protein, VDBP) on serum Vit-D and bone qualities in Chinese AIS patients and healthy adolescents, and (b) to further investigate the effect of ablating Wnt16 on the cortical bone quality and whether diets with different dosages of Vit-D would further influence bone quality during the rapid growth phase in mice in the absence of Wnt16. A total of 519 girls (318 AIS vs. 201 controls) were recruited, and three selected single-nucleotide polymorphisms (SNPs) (WNT16 rs3801387, VDBP rs2282679, and VDR rs2228570) were genotyped. The serum 25(OH)Vit-D level was significantly associated with VDBP rs2282679 alleles (OR = -4.844; 95% CI, -7.521 to -2.167, p < 0.001). Significant multi-locus models were identified by generalized multifactor dimensionality reduction (GMDR) analyses on the serum 25(OH)Vit-D level (p = 0.006) and trabecular area (p = 0.044). In the gene-edited animal study, Wnt16 global knockout (KO) and wildtype (WT) male mice were provided with different Vit-D diets (control chow (1000 IU/Kg) vs. Vit-D-deficient chow (Nil in Vit-D) vs. high-dose Vit-D chow (20,000 IU/Kg)) from 4 weeks to 10 weeks old. Wnt16 global KO mice had significantly lower serum 25(OH)Vit-D levels and higher liver Vdbp mRNA expression levels than WT mice. In addition, Wnt16 global KO mice showed a decrease in bone density, cortical thickness and cortical area compared with WT mice. Interestingly, high-dose Vit-D chow led to lower bone density, cortical thickness, and cortical area in WT mice, which were less obvious in Wnt16 global KO mice. In conclusion, WNT16 may regulate the serum 25(OH)Vit-D level and bone qualities, which might be associated with VDBP expression. Further investigations with a larger sample size and wider spectrum of scoliosis severity are required to validate our findings regarding the interaction between WNT16 and Vit-D status in patients with AIS.

2.
Biomed Pharmacother ; 165: 115204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499456

RESUMO

AIMS: The manipulation of macrophage recruitment and their shift in the M1/M2 ratio is a promising approach to mitigate osteoarthritis (OA). Nevertheless, the current clinical medication available for OA is only palliative and may result in undesirable outcomes. Hence, it is urgent to explore alternative disease-modifying drug supplement that are both safer and more effective in OA treatment, like probiotic and probiotic-derived membrane vesicles. METHODS: The synovial inflammation and cartilage damage in collagenase-induced OA (CIOA) mice were observed using haematoxylin and eosin, saffron O-solid green and immunohistochemical staining. Bipedal balance test and open field test were conducted to determine the effectiveness of L. johnsonii-derived membrane vesicles (LJ-MVs) in reducing joint pain of CIOA mice. Additionally, Transwell, western blot, and immunological testing were used to examine the effect of LJ-MVs on macrophage migration and reprogramming. Furthermore, a 4D label-free proteomic analysis of LJ-MVs and their parent bacterium was performed, and the glutamine synthetase (GS)/mTORC1 axis in macrophage was verified by western blot. RESULTS: L. johnsonii and its membrane vesicles, LJ-MVs, exhibit a novel ability to mitigate inflammation, cartilage damage, and pain associated with OA. This is achieved by their ability to impede macrophage migration, M1-like polarization, and inflammatory mediators secretion, while simultaneously promoting the M2/M1 ratio in synovial macrophages. The mechanism underlying this effect involves the modulation of macrophage GS/mTORC1 pathway, at least partially. SIGNIFICANCE: Owing to their probiotic derivation, LJ-MVs will be a more dependable and potent disease-modifying drugs for the prevention and therapy of OA in the long run.


Assuntos
Lactobacillus johnsonii , Osteoartrite , Camundongos , Animais , Glutamato-Amônia Ligase/metabolismo , Membrana Sinovial/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteômica , Osteoartrite/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA