Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 308: 116215, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36806339

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pulsatilla decoction has been extensively used to treat ulcerative colitis (UC) in recent years. Pulsatilla chinensis saponin (PRS), the active ingredient of its monarch medicine Pulsatilla chinensis (Bunge) Regel, plays a crucial role in the treatment of UC, but its specific mechanism of action has not been fully elucidated. AIM OF THE STUDY: This study aims to investigate the protective effect and possible mechanism of PRS on DSS-induced ulcerative colitis in rats. MATERIALS AND METHODS: In this study, the DSS-induced colitis model was used to explore the metabolism and absorption of PRS under UC, detect the content of short-chain fatty acids (SCFAs) in colon tissue, the expression of receptor G Protein-Coupled Receptor 43 (GPR43) protein and inflammasome NLRP3, and observe the expression level of IL-1ß, IL-6 and TNF-α in colon tissue. The protective effect of the PRS was also observed. RESULTS: It was found that in the UC group, the absorption rate and extent of drugs increased, and the elimination was accelerated. Compared with the control group, PRS increased the content of short-chain fatty acids (SCFAs) in colon tissue, promoted the expression of SCFAs receptor GPR43 protein, inhibited the activation of the NLRP3 inflammasome, and decreased the content of IL-1ß, IL-6 and TNF-α. PRS protects the colon in DSS-induced inflammatory bowel disease by increasing the content of SCFAs, promoting the expression of GPR43 protein, inhibiting the activation of the NLRP3 inflammasome, and reversing the increase in IL-1ß, IL-6 and TNF-α levels. CONCLUSIONS: PRS can increase the content of colonic SCFAs, activate the GPR43-NLRP3 signaling pathway, and reduce the levels of pro-inflammatory cytokines, thereby improving the symptoms of DSS-induced colitis.


Assuntos
Colite Ulcerativa , Colite , Pulsatilla , Saponinas , Ratos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Saponinas/farmacologia , Interleucina-6/metabolismo , Colite/tratamento farmacológico , Colo , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Ácidos Graxos Voláteis/metabolismo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675117

RESUMO

YUCCA, belonging to the class B flavin-dependent monooxygenases, catalyzes the rate-limiting step for endogenous auxin synthesis and is implicated in plant-growth regulation and stress response. Systematic analysis of the YUCCA gene family and its stress response benefits the dissection of regulation mechanisms and breeding applications. In this study, 12 YUCCA genes were identified from the mungbean (Vigna radiata L.) genome and were named based on their similarity to AtYUCCAs. Phylogenetic analysis revealed that the 12 VrYUCCAs could be divided into 4 subfamilies. The evidence from enzymatic assays in vitro and transgenetic Arabidopsis in vivo indicated that all the isolated VrYUCCAs had biological activity in response to IAA synthesis. Expression pattern analysis showed that functional redundancy and divergence existed in the VrYUCCA gene family. Four VrYUCCAs were expressed in most tissues, and five VrYUCCAs were specifically highly expressed in the floral organs. The response toward five stresses, namely, auxin (indole-3-acetic acid, IAA), salinity, drought, high temperatures, and cold, was also investigated here. Five VrYUCCAs responded to IAA in the root, while only VrYUCCA8a was induced in the leaf. VrYUCCA2a, VrYUCCA6a, VrYUCCA8a, VrYUCCA8b, and VrYUCCA10 seemed to dominate under abiotic stresses, due to their sensitivity to the other four treatments. However, the response modes of the VrYUCCAs varied, indicating that they may regulate different stresses in distinct ways to finely adjust IAA content. The comprehensive analysis of the VrYUCCAs in this study lays a solid foundation for further investigation of VrYUCCA genes' mechanisms and applications in breeding.


Assuntos
Arabidopsis , Vigna , Yucca , Vigna/genética , Vigna/metabolismo , Yucca/metabolismo , Filogenia , Melhoramento Vegetal , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296486

RESUMO

Alzheimer's disease is the most common neurodegenerative disease, characterized by memory loss and cognitive dysfunction. Raspberry fruits contain polyphenols which have antioxidant and anti-inflammatory properties. In this study, we used molecular imprinting technology to efficiently isolate phenolic components from the raspberry ethyl acetate extracts. Six phenolic components (ellagic acid, tiliroside, kaempferol-3-o-rutoside, gallic acid, ferulic acid and vanillic acid) were identified by UPLC-Q-TOF-MS analysis. Molecular docking was used to predict the anti-inflammatory effects and anti-Alzheimer's potential of these isolated compounds, which showed a good binding ability to diseases and related proteins. However, the binding energy and docking fraction of ellagic acid, tiliroside, and kaempferol-3-o-rutoside were better than those of gallic acid, ferulic acid and vanillic acid. Additionally, by studying the effects of these six phenolic components on the LPS-induced secretion of inflammatory mediators in murine microglial (BV2) cells, it was further demonstrated that they were all capable of inhibiting the secretion of NO, IL-6, TNF-α, and IL-1ß to a certain extent. However, ellagic acid, tiliroside, and kaempferol-3-o-rutoside have better inhibitory effects compared to others. The results obtained suggest that the phenolic components extracted from ethyl acetate extracts of raspberry by molecularly imprinted polymers have the potential to inhibit the progression of Alzheimer's disease.


Assuntos
Impressão Molecular , Doenças Neurodegenerativas , Rubus , Camundongos , Animais , Rubus/química , Antioxidantes/química , Quempferóis/farmacologia , Ácido Elágico/farmacologia , Ácido Elágico/análise , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa , Ácido Vanílico/farmacologia , Polímeros Molecularmente Impressos , Interleucina-6 , Lipopolissacarídeos , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Ácido Gálico/farmacologia , Rutina , Mediadores da Inflamação
4.
J Sep Sci ; 45(2): 638-649, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34729921

RESUMO

Callerya nitida var. hirsutissima. Z.Wei is a classical, traditional Chinese herbal medicine mostly used to treat rheumatoid arthritis. Recent reports suggest that inconsistent and poor-quality control levels have primarily affected the therapeutic efficacy. Therefore, the aim of the current study was to investigate the active chemical ingredients, stability of components in blood, pharmacokinetics, and pharmacodynamics to specify the potential markers for quality control and quality evaluation of Callerya nitida. The active components in vitro and in vivo were obtained by ultra-high-performance liquid chromatography-mass spectrometry. Moreover, the changes of the bioactive components in the blood were monitored over time (0-24 h) in order to identify stable active components. On this basis, the pharmacokinetic characteristics of these ingredients combined with the anti-inflammatory activity were determined to screen out the potential markers for ensuring the quality control of Callerya nitida. The identified four components, such as calycosin, daidzein, formononetin, and 5-hydroxymethylfurfural, have the characteristics of intrinsic components, clearly defined structures, high exposure values, and in vivo stability, which are important for the therapeutic activity of pharmacologically active materials. Therefore, they can be used as potential markers to control the quality levels of Callerya nitida.


Assuntos
Medicamentos de Ervas Chinesas , Fabaceae , Anti-Inflamatórios/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Medicina Tradicional Chinesa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA