Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109555, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615703

RESUMO

Developing a low-protein feed is important for the sustainable advancement of aquaculture. The aim of this study was to investigate the effects of essential amino acid (EAA) supplementation in a low-protein diet on the growth, intestinal health, and microbiota of the juvenile blotched snakehead, Channa maculata in an 8-week trial conducted in a recirculating aquaculture system. Three isoenergetic diets were formulated to include a control group (48.66 % crude protein (CP), HP), a low protein group (42.54 % CP, LP), and a low protein supplementation EAA group (44.44 % CP, LP-AA). The results showed that significantly lower weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), and feed efficiency ratio (FER) were observed in fish that were fed LP than in the HP and LP-AA groups (P < 0.05). The HP and LP-AA groups exhibited a significant increase in intestinal villus length, villus width, and muscular thickness compared to the LP group (P < 0.05). Additionally, the HP and LP-AA groups demonstrated significantly higher levels of intestinal total antioxidant capacity (T-AOC), catalase (CAT), and superoxide dismutase (SOD) and lower levels of malondialdehyde (MDA) compared to the LP group (P < 0.05). The apoptosis rate of intestinal cells in the LP group was significantly higher than those in the LP and HP groups (P < 0.05). The mRNA expression levels of superoxide dismutase (sod), nuclear factor kappa B p65 subunit (nfκb-p65), heat shock protein 70 (hsp70), and inhibitor of NF-κBα (iκba) in the intestine were significantly higher in the LP group than those in the HP and LP-AA groups (P < 0.05). The 16s RNA analysis indicated that EAA supplementation significantly increased the growth of Desulfovibrio and altered the intestinal microflora. The relative abundances of Firmicutes and Cyanobacteria were positively correlated with antioxidant parameters (CAT and T-AOC), whereas Desulfobacterota was negatively correlated with sod and T-AOC. The genera Bacillus, Bacteroides, and Rothia were associated with the favorable maintenance of gut health. In conclusion, dietary supplementation with EAAs to achieve a balanced amino acid profile could potentially reduce the dietary protein levels from 48.66 % to 44.44 % without adversely affecting the growth and intestinal health of juvenile blotched snakeheads.


Assuntos
Aminoácidos Essenciais , Ração Animal , Suplementos Nutricionais , Microbioma Gastrointestinal , Intestinos , Animais , Ração Animal/análise , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Aminoácidos Essenciais/administração & dosagem , Perciformes/crescimento & desenvolvimento , Perciformes/imunologia , Dieta com Restrição de Proteínas/veterinária , Dieta/veterinária , Distribuição Aleatória , Peixes/crescimento & desenvolvimento , Aquicultura , Channa punctatus
2.
Fish Shellfish Immunol ; 34(1): 273-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23178692

RESUMO

GRIM-19 is a nuclear encoded subunit of complex I that has been implicated in apoptosis. The protein participates in multiple functions including the innate immune response. GRIM-19 has been studied in humans and other mammals; however, fish GRIM-19 has not been well characterized. In this study, a new GRIM-19 gene, EcGRIM-19, was isolated from the orange-spotted grouper (Epinephelus coioides) cDNA library, which was constructed following LPS treatment. EcGRIM-19 is a 582-bp gene that encodes a 144-amino acid protein. The gene is a true ortholog of mammalian GRIM-19. EcGRIM-19 exhibits ubiquitous and constitutive expression in the different tissues of the orange-spotted grouper. The expression levels of EcGRIM-19 are altered in the gill, spleen, kidney and liver after induction with LPS. The subcellular localization analysis demonstrated that the EcGRIM-19 protein is localized predominantly in the mitochondria. In addition, amino acids 30-50 of the protein are responsible for the mitochondrial localization of EcGRIM-19. The caspase assay demonstrated that the overexpression of GRIM-19 enhanced the cellular sensitivity to interferon(IFN)-ß- and retinoic acid (RA)-induced death in HeLa cells. The data presented in this study are important for further understanding the EcGRIM-19 gene function in fish.


Assuntos
Bass/genética , Bass/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Caspases/metabolismo , Clonagem Molecular , DNA Complementar/genética , Células HeLa , Humanos , Interferon beta/metabolismo , Lipopolissacarídeos/farmacologia , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Transfecção , Tretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA