Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 319(Pt 3): 117364, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38380576

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a traditional Chinese medicine, Artemisia argyi has been used medicinally and eaten for more than 2000 years in China. It is widely reported in treating inflammatory diseases such as eczema, dermatitis, arthritis, allergic asthma and colitis. Although several studies claim that its volatile oil and organic reagent extracts have certain anti-inflammatory effects, the water-soluble fractions and molecular mechanisms have not been studied. AIM OF THE STUDY: To evaluate the therapeutic effect of A. argyi water extract (AAWE) on lipopolysaccharide (LPS)-induced inflammatory responses and to identify the most effective water-soluble subfractions. Moreover, the relevant pharmacological and molecular mechanisms by which the active subfraction mitigates inflammation were further investigated. MATERIALS AND METHODS: Firstly, RAW 264.7 cells stimulated with LPS were treated with AAWE (50, 100, and 200 µg/mL) or the water-soluble subfractions separated by D101 macroporous resin (AAWE1-AAWE4, 100 µg/mL), and NO production and mRNA levels of inflammatory genes were evaluated to determine the most effective water-soluble subfractions. Secondly, the chemical components of the active subfraction (AAWE4) were analyzed by UPLC-QTOF-MS. Thirdly, transcriptome and network pharmacology analysis, RT-qPCR and Western blotting assays were conducted to explore the underlying anti-inflammatory mechanism and active compounds of AAWE4. Subsequently, the binding ability of the potential active components in AAWE4 to the core targets was further determined by molecular docking. Eventually, the in vivo anti-inflammatory activity of AAWE4 (1.17, 2.34 and 4.68 g/kg, administered per day for 7 d) was evaluated in mice with LPS-induced systemic inflammation. RESULTS: In this study, AAWE showed excellent anti-inflammatory effects, and its water-soluble subfraction AAWE4 exhibited the strongest inhibitory effect on NO concentration and inflammatory gene mRNA expression after LPS stimulation, indicating that it was the most effective subfraction. Thereafter, four main compounds in AAWE4 were confirmed or tentatively identified by UPLC-QTOF-MS, including three flavonoid glycosides and one phenolic acid. Furthermore, the transcriptome and network pharmacology analysis showed that AAWE4 inhibited inflammation via multiple pathways and multiple targets. Based on the RT-qPCR and Western blotting results, AAWE4 downregulated not only the p38, PI3K, CCL5, MMP9, AP-1, and BCL3 mRNA expression levels activated by LPS but also their upstream and downstream protein expression levels and protein phosphorylation (p-AKT/AKT, p-p38/p38, p-ERK/ERK, p-JNK/JNK). Moreover, four identified compounds (isochlorogenic acid A, vicenin-2, schaftoside and isoschaftoside) could significantly inhibit NO content and the overexpression of inflammatory factors TNF-α, IL-1ß, iNOS and COX-2 mRNA induced by LPS, and the molecular docking confirmed the high binding activity of four active compounds with selected core targets (p38, AKT1, MMP9, and CCL5). In addition, the mRNA expression and immunohistochemical analysis showed that AAWE44 could inhibit lung inflammation via multiple pathways and multiple targets in vivo. CONCLUSIONS: The findings of this study suggest that the water-soluble subfraction AAWE4 from A. argyi ameliorated the inflammation caused by LPS through multiple pathways and multiple targets in vitro and in vivo, providing scientific support for the medicinal use of A. argyi. Importantly, it shows that the A. argyi subfraction AAWE4 can be developed as an anti-inflammatory drug.


Assuntos
Artemisia , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Extratos Vegetais/farmacologia , Metaloproteinase 9 da Matriz , NF-kappa B/metabolismo , Água , Artemisia/química , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , RNA Mensageiro
2.
Chin J Nat Med ; 22(1): 47-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278559

RESUMO

Artemisia argyi (A. argyi), a plant with a longstanding history as a raw material for traditional medicine and functional diets in Asia, has been used traditionally to bathe and soak feet for its disinfectant and itch-relieving properties. Despite its widespread use, scientific evidence validating the antifungal efficacy of A. argyi water extract (AAWE) against dermatophytes, particularly Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum, remains limited. This study aimed to substantiate the scientific basis of the folkloric use of A. argyi by evaluating the antifungal effects and the underlying molecular mechanisms of its active subfraction against dermatophytes. The results indicated that AAWE exhibited excellent antifungal effects against the three aforementioned dermatophyte species. The subfraction AAWE6, isolated using D101 macroporous resin, emerged as the most potent subfraction. The minimum inhibitory concentrations (MICs) of AAWE6 against T. rubrum, M. gypseum, and T. mentagrophytes were 312.5, 312.5, and 625 µg·mL-1, respectively. Transmission electron microscopy (TEM) results and assays of enzymes linked to cell wall integrity and cell membrane function indicated that AAWE6 could penetrate the external protective barrier of T. rubrum, creating breaches ("small holes"), and disrupt the internal mitochondrial structure ("granary"). Furthermore, transcriptome data, quantitative real-time PCR (RT-qPCR), and biochemical assays corroborated the severe disruption of mitochondrial function, evidenced by inhibited tricarboxylic acid (TCA) cycle and energy metabolism. Additionally, chemical characterization and molecular docking analyses identified flavonoids, primarily eupatilin (131.16 ± 4.52 mg·g-1) and jaceosidin (4.17 ± 0.18 mg·g-1), as the active components of AAWE6. In conclusion, the subfraction AAWE6 from A. argyi exerts antifungal effects against dermatophytes by disrupting mitochondrial morphology and function. This research validates the traditional use of A. argyi and provides scientific support for its anti-dermatophytic applications, as recognized in the Chinese patent (No. ZL202111161301.9).


Assuntos
Artemisia , Arthrodermataceae , Antifúngicos/farmacologia , Antifúngicos/química , Artemisia/química , Simulação de Acoplamento Molecular , Mitocôndrias , Testes de Sensibilidade Microbiana
3.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3701-3714, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475061

RESUMO

This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.


Assuntos
Artemisia , Medicamentos de Ervas Chinesas , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Medicamentos de Ervas Chinesas/farmacologia , Interleucina-6
4.
Zhongguo Zhong Yao Za Zhi ; 48(3): 752-761, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872239

RESUMO

This study explores the effect of apigenin(APG), oxymatrine(OMT), and APG+OMT on the proliferation of non-small cell lung cancer cell lines and the underlying mechanisms. Cell counting kit-8(CCK-8) assay was used to detect the vitality of A549 and NCI-H1975 cells, and colony formation assay to evaluate the colony formation ability of the cells. EdU assay was employed to examine the proliferation of NCI-H1975 cells. RT-qPCR and Western blot were performed to detect the mRNA and protein expression of PLOD2. Molecular docking was carried out to explore the direct action ability and action sites between APG/OMT and PLOD2/EGFR. Western blot was used to study the expression of related proteins in EGFR pathway. The viability of A549 and NCI-H1975 cells was inhibited by APG and APG+OMT at 20, 40, and 80 µmol·L~(-1) in a dose-dependent manner. The colony formation ability of NCI-H1975 cells was significantly suppressed by APG and APG+OMT. The mRNA and protein expression of PLOD2 was significantly inhibited by APG and APG+OMT. In addition, APG and OMT had strong binding activity with PLOD2 and EGFR. In APG and APG+OMT groups, the expression of EGFR and proteins in its downstream signaling pathways was significantly down-regulated. It is concluded that APG in combination with OMT could inhibit non-small lung cancer, and the mechanism may be related to EGFR and its downstream signaling pathways. This study lays a new theoretical basis for the clinical treatment of non-small cell lung cancer with APG in combination with OMT and provides a reference for further research on the anti-tumor mechanism of APG in combination with OMT.


Assuntos
Alcaloides , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Apigenina , Simulação de Acoplamento Molecular , Quinolizinas , RNA Mensageiro , Receptores ErbB
5.
BMC Plant Biol ; 22(1): 368, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35879664

RESUMO

BACKGROUND: Allelopathy is expressed through the release of plant chemicals and is considered a natural alternative for sustainable weed management. Artemisia argyi (A. argyi) is widely distributed throughout Asia, and often dominates fields due to its strong allelopathy. However, the mechanism of A. argyi allelopathy is largely unknown and need to be elucidated at the physiological and molecular levels. RESULTS: In this study, we used electron microscopy, ionomics analysis, phytohormone profiling, and transcriptome analysis to investigate the physiological and molecular mechanisms of A. argyi allelopathy using the model plant rice (Oryza sativa) as receptor plants. A. argyi water extract (AAWE)-treated rice plants grow poorly and display root morphological anomalies and leaf yellowing. We found that AAWE significantly inhibits rice growth by destroying the root and leaf system in multiple ways, including the integrity of ultrastructure, reactive oxygen species (ROS) homeostasis, and the accumulation of soluble sugar and chlorophyll synthesis. Further detection of the hormone contents suggests that AAWE leads to indole-3-acetic acid (IAA) accumulation in roots. Moreover, ionomics analysis shows that AAWE inhibits the absorption and transportation of photosynthesis-essential mineral elements, especially Mg, Fe, and Mn. In addition, the results of transcriptome analysis revealed that AAWE affects a series of crucial primary metabolic processes comprising photosynthesis in rice plants. CONCLUSIONS: This study indicates that A. argyi realizes its strongly allelopathy through comprehensive effects on recipient plants including large-scale IAA synthesis and accumulation, ROS explosion, damaging the membrane system and organelles, and obstructing ion absorption and transport, photosynthesis and other pivotal primary metabolic processes of plants. Therefore, AAWE could potentially be developed as an environmentally friendly botanical herbicide due to its strong allelopathic effects.


Assuntos
Artemisia , Oryza , Alelopatia , Hormônios/metabolismo , Oryza/metabolismo , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo
6.
Exp Ther Med ; 23(5): 315, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35371298

RESUMO

A common cause of treatment failure in ovarian cancer is acquired drug resistance. Therefore, effective novel drugs against chemoresistance need to be developed. MicroRNAs (miRNAs or miRs) serve key regulatory roles in tumorigenesis and chemoresistance. The objective of the present study was to explore the role of miR-let-7b in ovarian cancer chemoresistance, and to develop novel strategy for the treatment of drug-resistant ovarian cancer. For this purpose, reverse transcription-quantitative PCR was performed to evaluate the expression level of miR-let-7b in fresh ovarian cancer tissues and cell lines. miR-let-7b mimic was transfected into ovarian cancer cell lines. Functional experiments, cell apoptosis and cell viability assays were carried out to identify the tumor-suppressor function of miR-let-7b. The treatment effect of Radix ranunculus temate saponins (RRTS), one of the primary constituents extracted from the traditional Chinese medicine radix Ranunculi ternati, was identified in vitro and in vivo. The results revealed that miR-let-7b was downregulated significantly in chemoresistant ovarian cancer patients. miR-let-7b overexpression suppressed cell growth and invasion and enhanced sensitivity to Taxol of ovarian cancer cells. Furthermore, miR-let-7b levels in ovarian cancer tissue were inversely associated with collagen type III α1 chain (COL3A1) levels. COL3A1, a non-fibrillar collagen associated with chemoresistance, was targeted by miR-let-7b. RRTS showed cytotoxic effects on ovarian cancer cells through inducing miR-let-7b expression and decreasing COL3A1 expression. In addition, RRTS sensitized ovarian cancer to Taxol both in vitro and in vivo. In conclusion, the present results revealed synergistic cytotoxicity of RRTS and Taxol on against ovarian cancer cells via upregulating expression of miR-let-7b. Combination of Taxol and RRTS may be a novel treatment strategy for patients with TR ovarian cancer.

7.
J Agric Food Chem ; 70(5): 1494-1506, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089021

RESUMO

Allelopathy is considered an environmentally friendly and resource-conserving approach to weed control because allelochemicals degrade easily and cause less pollution than traditional chemical herbicides. In this study, the allelopathic active constituents of Artemisia argyi were elucidated by activity-guided isolation and ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). First, a crude extract prepared in water was fractionated using macroporous resin D101 to obtain three fractions (Fr.A-C). Combined with the allelopathic activity assay on Setaria viridis and Portulaca oleracea, Fr.C was determined to be the most active fraction. We identified 14 compounds in the active fraction (Fr.C) using UPLC-QTOF-MS, including 13 phenolic compounds. Accordingly, phenolic components have been suggested as the main allelochemicals in A. argyi. Thereafter, Fr.C was further isolated by octadecylsilyl (ODS) chromatography to obtain eight subfractions (Fr.C-1-Fr.C-8). Finally, isochlorogenic acid A (ICGAA) was purified from Fr.C-3 by semipreparative liquid chromatography, which was detected in the growth environment of A. argyi. Furthermore, we evaluated the allelopathic effects of ICGAA on six weeds from different families and genera for the first time. The results showed that ICGAA is a novel allelochemical with broad herbicidal activity. In addition, we analyzed the inhibitory effect and molecular mechanism of ICGAA on the growth of S. viridis seedlings. Optical microscopy and transmission electron microscopy (TEM) revealed the degradation of membrane structures and organelles after ICGAA treatment. Transcriptome and real-time polymerase chain reaction (RT-qPCR) analysis showed that ICGAA inhibited the growth of weeds mainly by inhibiting the diterpenoid biosynthesis pathway (especially gibberellins, GAs). The decrease of gibberellin (GA) contents after ICGAA treatment also confirmed these results. In brief, this study provides new material sources and theoretical support for developing biological herbicides for agroecosystems.


Assuntos
Alelopatia , Artemisia , Ácido Clorogênico/análogos & derivados , Cromatografia Líquida , Espectrometria de Massas , Plantas Daninhas
8.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5362-5371, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34738440

RESUMO

The present study explored the effects and its underlying mechanisms of four active fractions of Camellia nitidissima(leaf polyphenols, leaf saponins, flower polyphenols, and flower saponins in C. nitidissima) in inhibiting the proliferation and migration of non-small cell lung cancer(NSCLC) by suppressing the epidermal growth factor receptor(EGFR). MTT assay was used to detect the effect of four active fractions on the proliferation of NCI-H1975 and HCC827 cells. Wound healing assay and Transwell assay were adopted to evaluate the effect of four active fractions on the migration of NSCLC. The effect of four active fractions on the enzyme activity of EGFR was detected. Molecular docking was carried out to explore the direct action capacity and action sites between representative components of the four active fractions and EGPR. Western blot assay was employed to investigate the effect of four active fractions on the protein expression in EGFR downstream signaling pathways. The results of the MTT assay indicated that the cell viability of NCI-H1975 and HCC827 cells was significantly inhibited by four active fractions at 50, 100, 150, and 200 µg·mL~(-1) in a dose-dependent manner. Wound healing assay and Transwell assay revealed that the migration of NCI-H1975 and HCC827 cells was significantly suppressed by four active fractions. In addition, the results of the protein activity assay showed that the enzyme activity of EGFR was significantly inhibited by four active fractions. The molecular docking results confirmed that various components in four active fractions possessed strong binding activity to EGFR enzymes. Western blot assay revealed that four active fractions down-regulated the protein expression of EGFR and its downstream signaling pathways. It is concluded that the four active fractions of C. nitidissima can inhibit NSCLC. The mechanism may be related to EGFR and its downstream signaling pathways. This study provides a new scientific basis for the clinical treatment of NSCLC with active fractions of C. nitidissima, which is of reference significance for further research on the anti-tumor mechanism of C. nitidissima.


Assuntos
Camellia , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular
9.
Trials ; 22(1): 483, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301299

RESUMO

BACKGROUND: Headache attacks severely impaired life quality and increase the economic burden of migraineurs. Electroacupuncture (EA) has been used worldwidely to treat several pain-related diseases including migraines. However, whether EA with low or high frequency exerts a distinct analgesic effect remains unknown and needs further study. METHODS/DESIGN: This study is a randomised, single-blinded, placebo-controlled trial with three parallel arms. A total of 144 migraine outpatients will be randomly allocated to the 2 Hz EA group, 100 Hz EA group and placebo control group. The duration of the trial is 20 weeks, including a 4-week-long baseline assessment period (weeks - 4-0), a 4-week-long treatment period (weeks 1-4) and a 12-week-long follow-up period (weeks 5-16). Twelve treatment sessions will be performed over a 4-week period (weeks 1-4). The primary outcome will be measured by the frequency of migraine attacks in the past 4 weeks at the end of week 4 post-randomisation. The secondary outcome will be measured by the frequency of migraine attacks in the past 4 weeks at the end of weeks 8, 12 and16 post-randomisation; number of days with migraine; dosage of ibuprofen; the scores of visual analogue scale (VAS); Self-Rating Anxiety Scale (SAS); Self-Rating Depression Scale (SDS); and Migraine Specific Quality of Life questionnaire (MSQ) in the past 4 weeks at the end of weeks 4, 8, 12 and 16 post-randomisation. Safety assessment, compliance and blinding evaluation will be carried out at the end of week 16 post-randomisation. DISCUSSION: The recruitment will be started on 1 June 2021 and expected to finish on 31 May 2023. We aimed to clarify the dominant frequency of EA on headache attacks in a migraineur. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR-1800017259 . Registered on 20 July 2018.


Assuntos
Eletroacupuntura , Transtornos de Enxaqueca , Cefaleia , Humanos , Transtornos de Enxaqueca/diagnóstico , Transtornos de Enxaqueca/terapia , Pacientes Ambulatoriais , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
10.
Chem Biodivers ; 18(8): e2100206, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34142430

RESUMO

Chrysanthemum Flos is the prestigious traditional Chinese medicinal material and the popular health drink. This article comprehensively evaluated the chemical constituents, antioxidant activity, and hepatoprotective effects of 25 common chrysanthemum varieties in China. Firstly, we analyzed the chemical compositions of water extracts of chrysanthemum using UPLC/Q-TOF-MS, and identified 29 chemical components. The results displayed that chrysanthemum was rich in chemical constituents, but there were significant differences in the contents of four phenolic acids and five flavonoids among different varieties, and the coefficient of variation (CVs) ranged from 35.96 % to 114.62 %. Then, the antioxidant activities of different chrysanthemums were investigated, respectively via 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and Ferric Reducing Antioxidant Power (FRAP) assays. The spectrum-effect relationships between nine main components and antioxidant activities were investigated to identify the antioxidant constitutes in chrysanthemums. Meanwhile, H2 O2 -induced hepatocyte injury testing showed wide variation in cultivar antioxidant capacity, with Tongchengju (TCJ) producing the best effect (90.32 %), followed by Chuju (CJ; 85.78 %). In addition, the hepatoprotective effects of 8 mainstream varieties were determined by the model of acute alcoholic liver injury. They protected liver from injury by affecting relevant liver function and antioxidant indexes. Huangshangongju (HSG) could decrease aspartate aminotransferase (AST) activity by 39.27 % in liver tissue; Hangju-Fubaiju (HJ-FBJ), Jinsihuangju (JSH), and Chuju (CJ) significantly decreased the malondialdehyde (MDA) content of liver tissue, which reduced by more than 40 %; Jinsihuangju (JSH) of used for tea could double the content of glutathione (GSH) and had the similar effect on superoxide dismutase (SOD) as the positive group, showing significant antioxidant capacity. Therefore, this study confirmed that chrysanthemums are potential resources as antioxidants, functional foods, and medicinal materials. Importantly, it may provide a scientific support for further development and utilization of chrysanthemum, and screen excellent varieties for different demands.


Assuntos
Chrysanthemum/química , Extratos Vegetais/química , Animais , Antioxidantes/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , China , Chrysanthemum/metabolismo , Flores/química , Flores/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Medicina Tradicional Chinesa , Camundongos , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia
11.
Chemosphere ; 279: 130452, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33873064

RESUMO

The effective disposal of oily sludge generated from the petroleum industry has received increasing concern. The primary difficulty for the reduction and resource utilization of oily sludge is dewatering. Therefore, finding an efficient and energy-saving dewatering technology is an urgent need for the treatment of oily sludge. In this study, an innovative developed method using liquefied dimethyl ether (L-DME) for dewatering is employed to deal with oily sludge for the first time. Oily sludge from a refinery was used to conduct experiments in sequencing dissolution-separation reactors. Changes in the dehydration rate, oil recovery, group components (hydrocarbon series of petroleum, including saturates, aromatics, resins and asphaltenes) at different extraction time, temperatures and L-DME additions were measured. The results revealed that L-DME removed 90% of the water and recovered 40% of the oil, which was an amazing dehydration effect for oily sludge. The water-binding form of oily sludge is different from sewage sludge and other biomass and the water in oily sludge is in a stable water-in-oil (W/O) suspension emulsified state. L-DME was mixed with semi-colloidal like oily sludge to break the structure of the water-in-oil emulsion, making the mixture into a solid-liquid two phase substances that were easy to separate, thus achieving a high degree of separation of water. The dissolution of saturated hydrocarbons, aromatic hydrocarbons, and small amounts of colloid by L-DME played an important auxiliary role in water removal.


Assuntos
Petróleo , Esgotos , Hidrocarbonetos , Éteres Metílicos , Óleos , Água
12.
Environ Sci Pollut Res Int ; 28(23): 29931-29944, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33576963

RESUMO

Multiple stressors associated with global change are influencing the phytoplankton taxonomic composition and biomass in plateau lakes, such as higher levels of ultraviolet radiation (UVR, 280-400 nm) and the risk of eutrophication. Although the restrictive effects of high UVR on phytoplankton are generally recognized, the effects will be impacted by the UVR levels of seasonal changes and the nutrient status. In this study, in situ phytoplankton productivity was measured seasonally under full solar radiation and only visible light (photosynthetically active radiation, PAR) conditions in the plateau oligotrophic Lake Fuxian, Southwest China. To determine the single effects of UVR and nutrient enrichment and their combined impact on phytoplankton communities, a mesocosm experiment (1 month) was conducted outdoors during late summer (rainy season). The interactive experiment was designed with two radiation treatments (UVR + PAR and PAR) and four nutrient treatments (raw water, nitrogen addition, phosphorus addition, nitrogen and phosphorus addition). Our results suggested that the response of phytoplankton to UVR depended largely on nutrient availability, which was embodied in the no significant responses of phytoplankton productivity and total biomass to UVR in the oligotrophic raw water from Lake Fuxian, but the positive responses of total biomass to UVR in the nutrient enrichment treatment. Furthermore, the response of phytoplankton to UVR was also taxa dependent. Chlorophytes and dinoflagellates showed positive response to UVR, whereas chrysophytes were quite sensitive to UVR; diatoms had no significant response to UVR under all nutrient conditions, while the response of cyanobacteria to UVR was highly dependent on nutrient status. This study highlights that the increase in nutrient concentrations in oligotrophic lake not only directly promotes the growth of phytoplankton but also combines with low UVR during summer to benefit the growth of eutrophic taxa based on the non-negative effect of UVR on total phytoplankton biomass and the positive effect on eutrophic taxa.


Assuntos
Lagos , Fitoplâncton , Biomassa , China , Eutrofização , Nitrogênio/análise , Nutrientes , Fósforo/análise , Raios Ultravioleta
13.
Sci Rep ; 11(1): 4303, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619315

RESUMO

Allelopathy means that one plant produces chemical substances to affect the growth and development of other plants. Usually, allelochemicals can stimulate or inhibit the germination and growth of plants, which have been considered as potential strategy for drug development of environmentally friendly biological herbicides. Obviously, the discovery of plant materials with extensive sources, low cost and markedly allelopathic effect will have far-reaching ecological impacts as the biological herbicide. At present, a large number of researches have already reported that certain plant-derived allelochemicals can inhibit weed growth. In this study, the allelopathic effect of Artemisia argyi was investigated via a series of laboratory experiments and field trial. Firstly, water-soluble extracts exhibited the strongest allelopathic inhibitory effects on various plants under incubator conditions, after the different extracts authenticated by UPLC-Q-TOF-MS. Then, the allelopathic effect of the A. argyi was systematacially evaluated on the seed germination and growth of Brassica pekinensis, Lactuca sativa, Oryza sativa, Portulaca oleracea, Oxalis corniculata and Setaria viridis in pot experiments, it suggested that the A. argyi could inhibit both dicotyledons and monocotyledons not only by seed germination but also by seedling growth. Furthermore, field trial showed that the A. argyi significantly inhibited the growth of weeds in Chrysanthemum morifolium field with no adverse effect on the growth of C. morifolium. At last, RNA-Seq analysis and key gene detection analysis indicated that A.argyi inhibited the germination and growth of weed via multi-targets and multi-paths while the inhibiting of chlorophyll synthesis of target plants was one of the key mechanisms. In summary, the A. argyi was confirmed as a potential raw material for the development of preventive herbicides against various weeds in this research. Importantly, this discovery maybe provide scientific evidence for the research and development of environmentally friendly herbicides in the future.


Assuntos
Alelopatia/fisiologia , Artemisia/fisiologia , Germinação , Plantas Daninhas/crescimento & desenvolvimento , Artemisia/química , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Feromônios/biossíntese , Feromônios/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Daninhas/efeitos dos fármacos
14.
Chemosphere ; 267: 129267, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33338714

RESUMO

Hypertension is one of the most common illnesses worldwide. Accurate control of blood pressure can help reduce the incidence of complications. Nω-nitro-l-arginine methyl ester (l-NAME) is a nitric oxide synthase inhibitor that increases oxidative stress and inflammatory responses, activating the expression of transforming growth factor-beta (TGF-ß), which thickens the vessel wall and ultimately contributes to hypertension. Studies have shown that seeds of Camellia oleifera Abel and Camellia sinensis (L). O. Kuntze (Oolong tea) possesses antibacterial, antioxidant, and anti-inflammatory functions. Therefore, this study aimed was to investigate the functional components in the seed pomace ethanol extracts of C. oleifera Abel (CPE) and Oolong tea (OPE) and to evaluate the ameliorative effects of CPE and OPE on oxidative stress, inflammation, and vascular remodeling in l-NAME induced hypertensive C57BL/6J mice. After 8 weeks of treatment, all CPE and OPE dose groups significantly reduced systolic and diastolic blood pressure, by over 30 mmHg and 15 mmHg, respectively. Additionally, CPE and OPE decreased transforming growth factor-beta (TGF-ß) expression in the thoracic aortic and thoracic aortic intima-media thickness. Moreover, CPE and OPE decreased the malondialdehyde concentration in the liver by over 33%, as well as levels of tumor necrosis factor-α, interleukin 6, and interleukin-1ß in the kidney and heart. Collectively, CPE and OPE can reduce oxidative stress and vascular remodeling, lowering blood pressure, and reducing the risk of cardiovascular disease.


Assuntos
Camellia sinensis , Camellia , Ingredientes de Alimentos , Animais , Pressão Sanguínea , Espessura Intima-Media Carotídea , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Sementes
15.
J Agric Food Chem ; 68(49): 14670-14683, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33249832

RESUMO

Camellia oleifera Abel., belonging to the genus Camellia of Theaceae, has been widely used as a cooking oil, lubricant, and in cosmetics. Because of complicated polyploidization and large genomes, reference genome information is still lacking. Systematic characterization of gene models based on transcriptome data is a fast and economical approach for C. oleifera. Pacific Biosciences single-molecule long-read isoform sequencing (Iso-Seq) and Illumina RNA-Seq combined with gas chromatography were performed for exploration of oil biosynthesis, accumulation, and comprehensive transcriptome analysis in C. oleifera seeds at five different developmental stages. We report the first full-length transcriptome data set of C. oleifera seeds comprising 40,143 deredundant high-quality isoforms. Among these isoforms, 37,982 were functionally annotated, and 271 (2.43%) belonged to fatty acid metabolism. A total of 8,344 full-length unique transcript models were obtained, and 8,151 (97.69%) of them produced more than two isoforms, suggesting a high degree of transcriptome complexity in C. oleifera seeds. A total of 783 alternative splicing (AS) events were identified, among which the retained intron was the most abundant. We also obtained 1,910 long noncoding RNAs (lncRNAs) and found that AS events occurred in these lncRNAs. Potential transcript variants of genes involved in oil biosynthesis were also investigated. After performing weighted correlation network analysis, we found seven "gene modules" and hub genes for each module showing a significant association with oil content. The series test of clusters classified these modules into four significant profiles based on gene expression patterns. Protein-protein interaction network analysis showed that upregulated WRI1 interacted with 17 genes encoding the enzymes playing key roles in oil synthesis. MYB and ZIP transcriptional factors also showed significant interactions with key genes involved in oil synthesis. Collectively, our data advance the knowledge of RNA isoform diversity in seeds at different developmental stages and provide a rich resource for functional studies on oil synthesis in C. oleifera.


Assuntos
Camellia/genética , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Processamento Alternativo , Camellia/química , Camellia/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/genética , Sementes/metabolismo , Transcriptoma
16.
Chin J Integr Med ; 26(9): 663-669, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32740825

RESUMO

OBJECTIVE: To select potential molecules that can target viral spike proteins, which may potentially interrupt the interaction between the human angiotension-converting enzyme 2 (ACE2) receptor and viral spike protein by virtual screening. METHODS: The three-dimensional (3D)-coordinate file of the receptor-binding domain (RBD)-ACE2 complex for searching a suitable docking pocket was firstly downloaded and prepared. Secondly, approximately 15,000 molecular candidates were prepared, including US Food and Drug Administration (FDA)-approved drugs from DrugBank and natural compounds from Traditional Chinese Medicine Systems Pharmacology (TCMSP), for the docking process. Then, virtual screening was performed and the binding energy in Autodock Vina was calculated. Finally, the top 20 molecules with high binding energy and their Chinese medicine (CM) herb sources were listed in this paper. RESULTS: It was found that digitoxin, a cardiac glycoside in DrugBank and bisindigotin in TCMSP had the highest docking scores. Interestingly, two of the CM herbs containing the natural compounds that had relatively high binding scores, Forsythiae fructus and Isatidis radix, are components of Lianhua Qingwen (), a CM formula reportedly exerting activity against severe acute respiratory syndrome (SARS)-Cov-2. Moreover, raltegravir, an HIV integrase inhibitor, was found to have a relatively high binding score. CONCLUSIONS: A class of compounds, which are from FDA-approved drugs and CM natural compounds, that had high binding energy with RBD of the viral spike protein. Our work provides potential candidates for other researchers to identify inhibitors to prevent SARS-CoV-2 infection, and highlights the importance of CM and integrative application of CM and Western medicine on treating COVID-19.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Medicamentos de Ervas Chinesas/farmacologia , Glicoproteínas/efeitos dos fármacos , Imageamento Tridimensional , Simulação de Acoplamento Molecular/métodos , Pneumonia Viral/tratamento farmacológico , COVID-19 , China , Simulação por Computador , Infecções por Coronavirus/diagnóstico , Glicoproteínas/metabolismo , Humanos , Programas de Rastreamento/métodos , Pandemias , Peptidil Dipeptidase A/efeitos dos fármacos , Pneumonia Viral/diagnóstico , Ligação Proteica , Estados Unidos , United States Food and Drug Administration
17.
Artigo em Inglês | WPRIM | ID: wpr-827077

RESUMO

OBJECTIVE@#To select potential molecules that can target viral spike proteins, which may potentially interrupt the interaction between the human angiotension-converting enzyme 2 (ACE2) receptor and viral spike protein by virtual screening.@*METHODS@#The three-dimensional (3D)-coordinate file of the receptor-binding domain (RBD)-ACE2 complex for searching a suitable docking pocket was firstly downloaded and prepared. Secondly, approximately 15,000 molecular candidates were prepared, including US Food and Drug Administration (FDA)-approved drugs from DrugBank and natural compounds from Traditional Chinese Medicine Systems Pharmacology (TCMSP), for the docking process. Then, virtual screening was performed and the binding energy in Autodock Vina was calculated. Finally, the top 20 molecules with high binding energy and their Chinese medicine (CM) herb sources were listed in this paper.@*RESULTS@#It was found that digitoxin, a cardiac glycoside in DrugBank and bisindigotin in TCMSP had the highest docking scores. Interestingly, two of the CM herbs containing the natural compounds that had relatively high binding scores, Forsythiae fructus and Isatidis radix, are components of Lianhua Qingwen (), a CM formula reportedly exerting activity against severe acute respiratory syndrome (SARS)-Cov-2. Moreover, raltegravir, an HIV integrase inhibitor, was found to have a relatively high binding score.@*CONCLUSIONS@#A class of compounds, which are from FDA-approved drugs and CM natural compounds, that had high binding energy with RBD of the viral spike protein. Our work provides potential candidates for other researchers to identify inhibitors to prevent SARS-CoV-2 infection, and highlights the importance of CM and integrative application of CM and Western medicine on treating COVID-19.


Assuntos
Humanos , China , Simulação por Computador , Infecções por Coronavirus , Diagnóstico , Tratamento Farmacológico , Reposicionamento de Medicamentos , Métodos , Medicamentos de Ervas Chinesas , Farmacologia , Glicoproteínas , Metabolismo , Imageamento Tridimensional , Programas de Rastreamento , Métodos , Simulação de Acoplamento Molecular , Métodos , Pandemias , Peptidil Dipeptidase A , Pneumonia Viral , Diagnóstico , Tratamento Farmacológico , Ligação Proteica , Estados Unidos , United States Food and Drug Administration
18.
Artigo em Inglês | WPRIM | ID: wpr-827439

RESUMO

OBJECTIVE@#To select potential molecules that can target viral spike proteins, which may potentially interrupt the interaction between the human angiotension-converting enzyme 2 (ACE2) receptor and viral spike protein by virtual screening.@*METHODS@#The three-dimensional (3D)-coordinate file of the receptor-binding domain (RBD)-ACE2 complex for searching a suitable docking pocket was firstly downloaded and prepared. Secondly, approximately 15,000 molecular candidates were prepared, including US Food and Drug Administration (FDA)-approved drugs from DrugBank and natural compounds from Traditional Chinese Medicine Systems Pharmacology (TCMSP), for the docking process. Then, virtual screening was performed and the binding energy in Autodock Vina was calculated. Finally, the top 20 molecules with high binding energy and their Chinese medicine (CM) herb sources were listed in this paper.@*RESULTS@#It was found that digitoxin, a cardiac glycoside in DrugBank and bisindigotin in TCMSP had the highest docking scores. Interestingly, two of the CM herbs containing the natural compounds that had relatively high binding scores, Forsythiae fructus and Isatidis radix, are components of Lianhua Qingwen (), a CM formula reportedly exerting activity against severe acute respiratory syndrome (SARS)-Cov-2. Moreover, raltegravir, an HIV integrase inhibitor, was found to have a relatively high binding score.@*CONCLUSIONS@#A class of compounds, which are from FDA-approved drugs and CM natural compounds, that had high binding energy with RBD of the viral spike protein. Our work provides potential candidates for other researchers to identify inhibitors to prevent SARS-CoV-2 infection, and highlights the importance of CM and integrative application of CM and Western medicine on treating COVID-19.


Assuntos
Humanos , China , Simulação por Computador , Infecções por Coronavirus , Diagnóstico , Tratamento Farmacológico , Reposicionamento de Medicamentos , Métodos , Medicamentos de Ervas Chinesas , Farmacologia , Glicoproteínas , Metabolismo , Imageamento Tridimensional , Programas de Rastreamento , Métodos , Simulação de Acoplamento Molecular , Métodos , Pandemias , Peptidil Dipeptidase A , Pneumonia Viral , Diagnóstico , Tratamento Farmacológico , Ligação Proteica , Estados Unidos , United States Food and Drug Administration
19.
Biomed Res Int ; 2019: 7034983, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380435

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease. Abundant evidence demonstrates that oxidative stress may be not only an early event in this disease, but also a key factor in the pathogenesis of AD. Ginkgo biloba extract (EGb) has a strong ability to scavenge oxygen free radicals and supply hydrogen. The present study aims to investigate the effects of EGb on Neuro 2A cells transfected with Swedish mutant APP (APPsw). Stably transfected Neuro 2A cell lines expressing human wild-type APP (APP695), APPsw, or empty vector(neo) pEGFP-N2 were treated with 100 µg/ml EGb for 0, 2, 4, 6, 8, and 10 h. Oxidative stress was assessed by measuring free radicals and the activities of antioxidant enzymes. Our studies showed that EGb treatment reduced the production of reactive oxygen species (ROS) and the levels of malondialdehyde (MDA) significantly while total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were enhanced in Neuro 2A cells overexpressing APPsw. Meanwhile, Aß levels in these cells were also reduced compared to the levels in untreated cells and control cells (empty vector(neo) pEGFP-N2). These findings suggest that EGb can reduce oxidative stress by decreasing free radical and enhancing antioxidant status, further leading to reduced Aß aggregation; EGb might be a potential therapeutic agent for Alzheimer's disease (AD).


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Antioxidantes/química , Catalase/metabolismo , Radicais Livres/metabolismo , Ginkgo biloba , Humanos , Malondialdeído/metabolismo , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
20.
Theranostics ; 8(5): 1312-1326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507622

RESUMO

Rationale: The antitumor activity of high-dose ascorbate has been re-evaluated recently, but the mechanism underlying cell-specific sensitivity to ascorbate has not yet been clarified. Methods: The effects of high-dose ascorbate on gastric cancer were assessed using cancer cell lines with high and low expression of GLUT1 via flow cytometry and colony formation assays in vitro and patient-derived xenografts in vivo. Results: In this study, we demonstrated that gastric cancer cells with high GLUT1 expression were more sensitive to ascorbate treatment than cells with low GLUT1 expression. GLUT1 knockdown significantly reversed the therapeutic effects of pharmacological ascorbate, while enforced expression of GLUT1 enhanced the sensitivity to ascorbate treatment. The efficacy of pharmacological ascorbate administration in mice bearing cell line-based and patient-derived xenografts was influenced by GLUT1 protein levels. Mechanistically, ascorbate depleted intracellular glutathione, generated oxidative stress and induced DNA damage. The combination of pharmacological ascorbate with genotoxic agents, including oxaliplatin and irinotecan, synergistically inhibited gastric tumor growth in mouse models. Conclusions: The current study showed that GLUT1 expression was inversely correlated with sensitivity of gastric cancer cells to pharmacological ascorbate and suggested that GLUT1 expression in gastric cancer may serve as a marker for sensitivity to pharmacological ascorbate.


Assuntos
Ácido Ascórbico/farmacologia , Transportador de Glucose Tipo 1/metabolismo , Oxaliplatina/farmacologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Glutationa/metabolismo , Humanos , Irinotecano/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA