Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 47(2): 412-418, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178983

RESUMO

Farnesyl diphosphate synthase(FPPS) is a key enzyme at the branch point of the sesquiterpene biosynthetic pathway, but there are no reports on the transcriptional regulation of FPPS promoter in Pogostemon cabin. In the early stage of this study, we obtained the binding protein PcFBA-1 of FPPS gene promoter in P. cabin. In order to explore the possible mechanism of PcFBA-1 involved in the regulation of patchouli alcohol biosynthesis, this study performed PCR-based cloning and sequencing analysis of PcFBA-1, analyzed the expression patterns of PcFBA-1 in different tissues by fluorescence quantitative PCR and its subcellular localization using the protoplast transformation system, detected the binding of PcFBA-1 protein to the FPPS promoter in vitro with the yeast one-hybrid system, and verified its transcriptional regulatory function by dual-luciferase reporter gene assay. The findings demonstrated that the cloned PcFBA-1 had an open reading frame(ORF) of 1 131 bp, encoding a protein of 376 amino acids, containing two conserved domains named F-box-like superfamily and FBA-1 superfamily, and belonging to the F-box family. Moreover, neither signal peptide nor transmembrane domain was contained, implying that it was an unstable hydrophilic protein. In addition, as revealed by fluorescence quantitative PCR results, PcFBA-1 had the highest expression in leaves, and there was no significant difference in expression in roots or stems. PcFBA-1 protein was proved mainly located in the cytoplasm. Furthermore, yeast one-hybrid screening and dual-luciferase reporter gene assay showed that PcFBA-1 was able to bind to FPPS promoter both in vitro and in vivo to enhance the activity of FPPS promoter. In summary, this study identifies a new transcription factor PcFBA-1 in P. cabin, which directly binds to the FPPS gene promoter to enhance the promoter activity. This had laid a foundation for the biosynthesis of patchouli alcohol and other active ingre-dients and provided a basis for metabolic engineering and genetic improvement of P. cabin.


Assuntos
Pogostemon , Sequência de Aminoácidos , Clonagem Molecular , Geraniltranstransferase/genética , Fatores de Transcrição/genética
2.
J Oral Pathol Med ; 38(1): 79-86, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19192053

RESUMO

BACKGROUND: Areca nut chewing is associated with an increase in the incidence of oral neoplastic or inflammatory diseases. Aberrations in matrix metalloprotease (MMP) expression are associated with the pathogenesis of oral diseases. This study investigated the potential effects of areca nut extract (ANE) on human gingival fibroblasts and the consequential impacts on inflammatory pathogenesis. METHODS: Analyses of senescence marker, cell viability, changes of the cell cycle, and cell granularity in gingival fibroblasts together with an assessment of the invasiveness of polymorphonuclear (PMN) leukocytes after treatment with the supernatant of ANE-treated gingival fibroblasts were performed to characterize the phenotypic impacts. Western blotting and gelatin zymography were used to assay the expression and activity of MMP-2. RESULTS: Chronic subtoxic (<10 microg/ml) ANE treatment resulted in premature growth arrest, appearance of senescence-associated beta-galactosidase activity and various other senescence-associated phenotypes in gingival fibroblasts. Gingival fibroblasts established from older individuals had a higher propensity to become ANE-induced senescent gingival fibroblasts. An activation of MMP-2 was identified in senescent cells. PMN leukocytes treated with the supernatant of ANE-induced senescent cells exhibited a significant increase in invasiveness, which was abrogated by both a MMP-2 blocker and a MMP-2 nullifying antibody. CONCLUSIONS: This study provides evidence whereby MMP-2 secreted from ANE-induced senescent gingival fibroblasts would facilitate the invasiveness of PMN leukocytes, which could be associated with the oral inflammatory process in areca chewers.


Assuntos
Areca , Fibroblastos/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Infiltração de Neutrófilos/fisiologia , Neutrófilos/fisiologia , Extratos Vegetais/farmacologia , Anticorpos , Biomarcadores/análise , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fibroblastos/enzimologia , Gengiva/citologia , Gengiva/enzimologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Inibidores de Metaloproteinases de Matriz , Neutrófilos/enzimologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA