Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Funct ; 12(19): 9391-9404, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606557

RESUMO

Cisplatin is one of the most effective chemotherapeutic agents used for the treatment of a wide variety of cancers. However, cisplatin has been associated with nephrotoxicity, which limits its application in clinical treatment. Various studies have indicated the protective effect of phospholipids against acute kidney injury. However, no study has focused on the different effects of phospholipids with different fatty acids on cisplatin-induced nephrotoxicity and on the combined effects of phospholipids and cisplatin in tumour-bearing mice. In the present study, the potential renoprotective effects of phospholipids with different fatty acids against cisplatin-induced nephrotoxicity were investigated by determining the serum biochemical index, renal histopathological changes, protein expression level and oxidative stress. The results showed that docosahexaenoic acid-enriched phospholipids (DHA-PL) and eicosapentaenoic acid-enriched phospholipids (EPA-PL) could alleviate cisplatin-induced nephrotoxicity by regulating the caspase signaling pathway, the SIRT1/PGC1α pathway, and the MAPK (mitogen-activated protein kinase) signaling pathway and by inhibiting oxidative stress. In particular, DHA-PL exhibited a better inhibitory effect on oxidative stress and apoptosis compared to EPA-PL. Furthermore, DHA-PL exhibited an additional effect with cisplatin on the survival of ascitic tumor-bearing mice. These findings suggested that DHA-PL are one kind of promising supplement for the alleviation of cisplatin-induced nephrotoxicity without compromising its antitumor activity.


Assuntos
Injúria Renal Aguda/prevenção & controle , Cisplatino/toxicidade , Cisplatino/uso terapêutico , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Fosfolipídeos/administração & dosagem , Sarcoma 180/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Apoptose , Ácido Eicosapentaenoico/administração & dosagem , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfolipídeos/química , Transdução de Sinais , Sirtuína 1/metabolismo
2.
Mar Drugs ; 19(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34564161

RESUMO

Prevention of acute kidney injury caused by drugs is still a clinical problem to be solved urgently. Astaxanthin (AST) and docosahexaenoic acid (DHA) are important marine-derived active ingredients, and they are reported to exhibit renal protective activity. It is noteworthy that the existing forms of AST in nature are mainly fatty acid-acylated AST monoesters and diesters, as well as unesterified AST, in which DHA is an esterified fatty acid. However, no reports focus on the different bioactivities of unesterified AST, monoesters and diesters, as well as the recombination of DHA and unesterified AST on nephrotoxicity. In the present study, vancomycin-treated mice were used to evaluate the effects of DHA-acylated AST monoesters, DHA-acylated AST diesters, unesterified AST, and the recombination of AST and DHA in alleviating nephrotoxicity by determining serum biochemical index, histopathological changes, and the enzyme activity related to oxidative stress. Results found that the intervention of DHA-acylated AST diesters significantly ameliorated kidney dysfunction by decreasing the levels of urea nitrogen and creatinine, alleviating pathological damage and oxidative stress compared to AST monoester, unesterified AST, and the recombination of AST and DHA. Further studies revealed that dietary DHA-acylated AST esters could inhibit the activation of the caspase cascade and MAPKs signaling pathway, and reduce the levels of pro-inflammatory cytokines. These findings indicated that the administration of DHA-acylated AST esters could alleviate vancomycin-induced nephrotoxicity, which represented a potentially novel candidate or therapeutic adjuvant for alleviating acute kidney injury.


Assuntos
Injúria Renal Aguda/prevenção & controle , Ácidos Docosa-Hexaenoicos/farmacologia , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Organismos Aquáticos , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ésteres , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Vancomicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA