Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 452
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 798-808, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621884

RESUMO

This study employed network pharmacology to investigate the effect of Guizhi Gancao Decoction(GGD) on myocardial ischemia-reperfusion injury(MI/RI) in rats and decipher the underlying mechanism. Firstly, the chemical components and targets of GGD against MI/RI were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), SwissTargetPrediction, and available articles. STRING and Cytoscape 3.7.2 were used to establish the protein-protein interaction(PPI) network for the common targets, and then Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were carried out for the core targets. The "drug-active component-target-pathway" network was built. Furthermore, molecular docking between key active components and targets was conducted in AutoDock Vina. Finally, the rat model of MI/RI was established, and the myocardial infarction area was measured. Hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM) were employed to detect cardiomyocyte pathology and ultrastructural changes. Western blot was employed to determine the expression of related proteins in the myocardial tissue. A total of 75 chemical components of GGD were screened out, corresponding to 318 targets. The PPI network revealed 46 core targets such as tumor protein p53(TP53), serine/threonine kinase 1(AKT1), signal transducer and activator of transcription 3(STAT3), non-receptor tyrosine kinase(SRC), mitogen-activated protein kinase 1(MAPK1), MAPK3, and tumor necrosis factor(TNF). According to GO and KEGG enrichment analyses, the core targets mainly affected the cell proliferation and migration, signal transduction, apoptosis, and transcription, involving advanced glycation end products-receptor(AGE-RAGE), MAPK and other signaling pathways in cancers and diabetes complications. The molecular docking results showed that the core components of GGD, such as licochalcone A,(+)-catechin, and cinnamaldehyde, had strong binding activities with the core target proteins, such as MAPK1 and MAPK3. The results of animal experiments showed that compared with the model group, GGD significantly increase superoxide dismutase, decreased malondialdehyde, lactate dehydrogenase, and creatine kinase-MB, and reduced the area of myocardial infarction. HE staining and TEM results showed that GGD pretreatment restored the structure of cardiomyocytes and alleviated the pathological changes and ultrastructural damage of mitochondria in the model group. In addition, GGD significantly down-regulated the phosphorylation of c-Jun N-terminal kinase and p38 and up-regulate that of extracellular regulated kinases 1/2 in the myocardial tissue. The results suggested that GGD may exert the anti-MI/RI effect by regulating the MAPK signaling pathway via the synergistic effects of Cinnamomi Ramulus and Glycyrrhizae Radix et Rhizoma.


Assuntos
Medicamentos de Ervas Chinesas , Glycyrrhiza , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Ratos , Farmacologia em Rede , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Simulação de Acoplamento Molecular , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Medicamentos de Ervas Chinesas/farmacologia
2.
Food Chem ; 448: 139138, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569407

RESUMO

Tea cream formed in hot and strong tea infusion while cooling deteriorates quality and health benefits of tea. However, the interactions among temporal contributors during dynamic formation of tea cream are still elusive. Here, by deletional recombination experiments and molecular dynamics simulation, it was found that proteins, caffeine (CAF), and phenolics played a dominant role throughout the cream formation, and the contribution of amino acids was highlighted in the early stage. Furthermore, CAF was prominent due to its extensive binding capacity and the filling complex voids property, and caffeine-theaflavins (TFs) complexation may be the core skeleton of the growing particles in black tea infusion. In addition to TFs, the unidentified phenolic oxidation-derived products (PODP) were confirmed to contribute greatly to the cream formation.


Assuntos
Cafeína , Camellia sinensis , Catequina , Simulação de Dinâmica Molecular , Chá , Chá/química , Cafeína/química , Cafeína/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Camellia sinensis/crescimento & desenvolvimento , Catequina/química , Catequina/metabolismo , Biflavonoides/química , Biflavonoides/metabolismo , Fenóis/química , Fenóis/metabolismo , Manipulação de Alimentos , Temperatura Alta
3.
J Ethnopharmacol ; 327: 118045, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479546

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yunvjian (YNJ), a traditional Chinese herbal formula first reported in Jing Yue Quan Shu, is commonly used in the clinical treatment of type 2 diabetes mellitus (T2DM). However, the mechanism by which YNJ affects T2DM remains unclear. AIM OF THE STUDY: This study aimed to assess the therapeutic effects of YNJ on T2DM and explore the potential mechanism involved. MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used to identify the chemical compounds of YNJ. The anti-T2DM effects of YNJ were observed in a high-fat diet/streptozotocin induced rat model. The type 2 diabetic rats were prepared as follows: rats were fed a high-fat diet for four weeks and then intraperitoneally injected with a low dose (30 mg/kg) of streptozotocin. YNJ and the positive control metformin were used in these experiments. Biochemical assays were implemented to determine the fasting blood glucose, glucose tolerance, insulin sensitivity, serum lipid levels, and oxidative stress index of the pancreas. Hematoxylin-eosin (H&E) staining was used to assess histopathological alterations in the pancreas. The mechanism by which YNJ affects T2DM was evaluated in INS-1 cells treated with glucose and high sodium palmitate. YNJ-supplemented serum was used in these experiments. Methyl thiazolyl tetrazolium assays, enzyme-linked immunosorbent assays, Nile red staining, flow cytometric analysis, and Western blotting were used to assess apoptosis, insulin secretion, lipid accumulation, reactive oxygen species production, and protein levels. RESULTS: Five major compounds were identified in YNJ. In high-fat diet/streptozotocin-induced diabetic rats, YNJ-M notably decreased fasting blood glucose and lipid levels; ameliorated glucose tolerance, insulin sensitivity, and islet morphology; reduced Malondialdehyde levels; and restored superoxide dismutase activity in the pancreatic islets. Furthermore, the effect of YNJ-M was significantly greater than that of YNJ-L, and YNJ-H had little effect on diabetic rats. In vitro experiments revealed that YNJ-supplemented serum (10%, 15%, and 20%) dramatically suppressed apoptosis, mitigated intracellular lipid accumulation and reduced intracellular oxidative stress levels in a dose-dependent manner. Additionally, YNJ-supplemented serum increased the protein expression of Nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, and superoxide dismutase 1 and inhibited the protein expression of Kelch-like ECH-associated protein 1. CONCLUSION: YNJ ameliorates high-fat diet/streptozotocin induced experimental T2DM. The underlying mechanism involves reducing oxidative stress in pancreatic beta cells. The findings of this study provide scientific justification for the application of the traditional medicine YNJ in treating T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Células Secretoras de Insulina , Ratos , Animais , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Estreptozocina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Glicemia , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo , Hiperglicemia/tratamento farmacológico , Glucose/metabolismo , Lipídeos
4.
Risk Manag Healthc Policy ; 17: 387-397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476198

RESUMO

Purpose: Practitioners in China who implement hospice care services include doctors, nurses, and care workers. These individuals play an important role in the holistic care of patients at the end of life and their families. This study aimed to provide baseline data to develop hospice care services and improve relevant policies by investigating the knowledge and attitudes of hospice care practitioners (HCPs) and analyzing influencing factors. Methods: This cross-sectional descriptive study used stratified sampling and quota sampling. The HCPs were from nursing homes, medical institutions, integrated medical and nursing institutions, and community health service centers in Guangxi Zhuang Autonomous Region. We examined HCPs' demographic characteristics and scores on a self-designed Chinese scale to measure their knowledge and attitudes(K&A scale). A total of 1821 HCPs completed surveys from May 2022 to July 2022. The data were analyzed using descriptive statistics, univariate analysis and multiple linear regression. Results: The standard score of the K&A scale of 1821 HCPs was 61.62 (SD=9.78), and the individual mean scores of knowledge and attitudes were 76.42 (SD=28.13) and 58.69 (SD=11.31), respectively. The final multiple linear regression analysis indicated that the main factors that influenced the K&A score were monthly income, job satisfaction, and the hospice care-related system (HCS). Conclusion: The HCPs in this study displayed moderate mean scores for knowledge and a less favorable attitude toward hospice care. Monthly income, job satisfaction and the HCS were the common factors that influenced HCPs' K&A. The results suggest the need to strengthen targeted and professional training for HCPs, increase their welfare and benefits, and improve indigenous policies of hospice care.

5.
Phytother Res ; 38(5): 2154-2164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38391003

RESUMO

Proanthocyanidins (PCs) are natural antioxidant polyphenols and their effect on the regulation of blood lipids is still controversial. This study was conducted to evaluate the effect of PCs on lipid metabolism. We searched PubMed, Embase, Web of Science, Chinese biomedical literature service system, China National Knowledge Internet, and Wanfang Data with no time restriction until March 18, 2022, using various forms of "proanthocyanidins" and "blood lipid" search terms. Randomized controlled trials investigating the relationship between PCs and lipid metabolism were included. The standard system of Cochrane Collaboration was used to assess the quality of studies. We standardized mean differences (SMDs) with 95% confidence interval (CI) using the random-effects model, Cohen approach. Seventeen studies (17 trials, N = 1138) fulfilled the eligibility criteria. PCs significantly reduced triglyceride, and increased recombinant apolipoprotein A1. Subgroup analysis showed a significant reduction in triglycerides in older adults (≥60 years) and total cholesterol for participants who were not overweight or obese (body mass index <24). An intervention duration of greater than 8 weeks reduced triglyceride and low-density lipoprotein cholesterol levels but increased high-density lipoprotein cholesterol. Different doses of PCs could regulate triglycerides, high-density lipoprotein cholesterol and total cholesterol. PCs have beneficial effects on circulating lipids and may represent a new approach for treating or preventing lipid metabolism disorders. However, more high-quality studies are needed to confirm these results.


Assuntos
Proantocianidinas , Triglicerídeos , Proantocianidinas/farmacologia , Humanos , Triglicerídeos/sangue , Lipídeos/sangue , Ensaios Clínicos Controlados Aleatórios como Assunto , Metabolismo dos Lipídeos/efeitos dos fármacos , LDL-Colesterol/sangue , HDL-Colesterol/sangue , Apolipoproteína A-I/sangue , Colesterol/sangue , Antioxidantes/farmacologia
6.
J Vis Exp ; (203)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314806

RESUMO

Zhuang medicine thread moxibustion therapy is one of the national intangible cultural heritages. It is a Zhuang medicine characteristic therapy that involves igniting ramie thread soaked in Zhuang medicine preparation solution and directly moxibustion on a certain acupoint or part of the body surface. This treatment method is characterized by combining drug, acupoints, and moxibustion, stimulating the skin's receptors at the acupoints through the warmth of moxibustion, affecting the biochemical metabolism of histiocyte and the function of the nervous system so that the drug ingredients can be absorbed through the skin. However, the therapeutic effect of Zhuang medicine line moxibustion is influenced by factors such as moxibustion intensity, heat intensity, and moxibustion frequency. Manual operation cannot precisely control each influencing factor. Here, we design a Zhuang medicine line moxibustion simulation instrument to maintain a constant force, heat, and frequency. The frequency and heat can be adjusted according to experimental needs, and it can be applied to the study of analgesic experiments to observe the analgesic effect of Zhuang medicine line moxibustion on pain animal models to solve the standardization problem of Zhuang medicine line moxibustion in the operation process of experimental animals.This study establishes a model of primary dysmenorrhea in rats with cold coagulation syndrome and provides a detailed introduction to the preparation, process, and precautions of Zhuang medicine thread moxibustion on the model of primary dysmenorrhea in rats with cold coagulation syndrome. The intervention of Zhuang medicine thread moxibustion on primary dysmenorrhea in rats with cold coagulation syndrome is evaluated by twisting score and infrared thermal imaging body surface temperature detection, intuitively demonstrating the therapeutic effect of Zhuang medicine thread moxibustion, and a preliminary analysis of its mechanism of action is conducted.


Assuntos
Terapia por Acupuntura , Moxibustão , Humanos , Feminino , Ratos , Animais , Moxibustão/métodos , Dismenorreia , Pontos de Acupuntura , Analgésicos
7.
J Exp Clin Cancer Res ; 43(1): 62, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38419081

RESUMO

BACKGROUND: In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold­inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS: CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS: Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)­like population. Moreover, hyperthermia substantially improved the sensitivity of radiation­resistant NPC cells and CSC­like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti­tumor­killing activity of hyperthermia against NPC cells and CSC­like cells, whereas ectopic expression of Cirbp compromised tumor­killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC­like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION: Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.


Assuntos
Diterpenos do Tipo Caurano , Hipertermia Induzida , MicroRNAs , Neoplasias Nasofaríngeas , Animais , Humanos , Neoplasias Nasofaríngeas/patologia , Sincalida/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
8.
J Ethnopharmacol ; 326: 117919, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38364933

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Apocyni Veneti Folium (AVF), a popular traditional Chinese medicine (TCM), is known for its effects in soothing the liver and nerves and eliminating heat and water. It is relevant from an ethnopharmacological perspective. Pharmacological research has confirmed its benefits on antihypertension, antihyperlipidemia, antidepression, liver protection, immune system boosting, antiaging, and diabetic vascular lesions. Previous studies have shown that flavonoids, the active ingredients, have a hepatoprotective effect. However, the exact mechanism has not been clarified. AIM OF THE STUDY: This study aimed to identify the active flavonoids in AVF and their corresponding targets for liver injury. Multiple methods were introduced to confirm the targets. MATERIAL AND METHODS: AVF compounds were analyzed using liquid chromatography-mass spectrometry (LC-MS). Then, network pharmacology was utilized to screen potential hepatoprotection targets of the compounds. An enzyme activity assay was performed to determine the effect of the compounds on the targets. Biolayer interferometry (BLI) was applied to confirm the direct interaction between the compounds and the targets. RESULTS: A total of 71 compounds were identified by LC-MS and 19 compounds and 112 shared targets were screened using network pharmacology. These common targets were primarily involved in the TNF signaling pathway, cancer pathways, hepatitis B, drug responses, and negative regulation of the apoptotic process. Flavonoids were the primary pharmacological substance basis of AVF. The cyclooxygenase 2 (COX2) protein was one of the direct targets of flavonoids in AVF. The enzyme activity assay and BLI-based intermolecular interactions demonstrated that the compounds astragalin, isoquercitrin, and hyperoside exhibited stronger inhibition of enzyme activity and a higher affinity with COX2 compared to epigallocatechin, quercetin, and catechin. CONCLUSIONS: COX2 was preliminarily identified as a target of flavonoids, and the mechanism of the hepatoprotective effect of AVF might be linked to flavonoids inhibiting the activity of COX2. The findings can establish the foundation for future research on the traditional hepatoprotective effect of AVF on the liver and for clinical studies on liver disorders.


Assuntos
Medicamentos de Ervas Chinesas , Flavonoides , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/análise , Ciclo-Oxigenase 2 , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Fígado , Simulação de Acoplamento Molecular
9.
Acta Biomater ; 173: 36-50, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939816

RESUMO

The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades, and its non-invasive features have great advantages, especially for clinical diseases where surgical treatment is not available or appropriate. Recently, rapid advances in the adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials have significantly promoted the medical application of FUS ablation. However, a systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications of sono-activated materials in the FUS ablation biomedical field. First, the different ablation mechanisms and the key factors affecting ablation are carefully determined. Then, the design of sono-activated materials with high FUS ablation efficiencies is comprehensively discussed. Subsequently, the representative biological applications are summarized in detail. Finally, the primary challenges and future perspectives are also outlined. We believe this timely review will provide key information and insights for further exploration of focused ultrasound ablation and new inspiration for designing future sono-activated materials. STATEMENT OF SIGNIFICANCE: The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades. However, there are also some challenges of FUS ablation, such as skin burns, tumour recurrence after thermal ablation, and difficulty in controlling cavitation ablation. The rapid advance in adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials has significantly promoted the medical application of FUS ablation. However, the systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications in the FUS ablation biomedical field of sono-activated materials. We believe this timely review will provide key information and insights for further exploration of FUS ablation.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos
10.
FEMS Microbiol Rev ; 48(1)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38093453

RESUMO

Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the nonsymbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the nonsymbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.


Assuntos
Alphaproteobacteria , Raízes de Plantas , Bactérias , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Simbiose
11.
J Pharm Biomed Anal ; 239: 115887, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056284

RESUMO

Citrus reticulata pericarpium (CRP), the peel of Citrus reticulata 'Dahongpao' (DHP) is a medicinal herb with significant therapeutic value for treating ulcerative colitis (UC). However, the active therapeutic components of CRP are unclear. This study aims to reveal the metabolites potentially associated with the pharmacological properties of CRP. We performed flavonoid-targeting metabolomics to characterize the components of CRP (anti-UC part), tangerine pith and Citrus reticulata semen (no anti-UC effects parts) of DHP and further screened active components of CRP using network pharmacology and molecular docking. Lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were used to study the anti-inflammatory effect of the selected biologically active components. The therapeutic effects of the selected components were further investigated in a mouse model of UC induced by DSS. Three compounds, namely nobiletin, sinensetin, and hispidulin had the lowest docking scores among all screened ingredients. IL-6 and NO concentrations were significantly decreased in the LPS-stimulated RAW264.7 cells compared with control cells treated with these compounds. Moreover, UC mice treated with these compounds showed a reversal in weight loss, inhibition of shortening of colon length, and amelioration of colon injury. Our results indicated that sinensetin, nobiletin, and hispidulin can be potentially used for the treatment of UC.


Assuntos
Citrus , Colite Ulcerativa , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Farmacologia em Rede , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/metabolismo , Simulação de Acoplamento Molecular
12.
Phytomedicine ; 123: 155214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134861

RESUMO

BACKGROUND: Gemcitabine is a first-line chemotherapeutic agent for pancreatic cancer (PC); however, most patients who receive adjuvant gemcitabine rapidly develop resistance and recurrence. Cancer-associated fibroblasts (CAFs) are a crucial component of the tumor stroma that contribute to gemcitabine-resistance. There is thus an urgent need to find a novel therapeutic strategy to improve the efficacy of gemcitabine in PC cells under CAF-stimulation. PURPOSE: To investigate if shikonin potentiates the therapeutic effects of gemcitabine in PC cells with CAF-induced drug resistance. METHODS: PC cell-stimulated fibroblasts or primary CAFs derived from PC tissue were co-cultured with PC cells to evaluate the ability of shikonin to improve the chemotherapeutic effects of gemcitabine in vitro and in vivo. Glucose uptake assay, ATP content analysis, lactate measurement, real-time PCR, immunofluorescence staining, western blot, and plasmid transfection were used to investigate the underlying mechanism. RESULTS: CAFs were innately resistant to gemcitabine, but shikonin suppressed the PC cell-induced transactivation and proliferation of CAFs, reversed CAF-induced resistance, and restored the therapeutic efficacy of gemcitabine in the co-culture system. In addition, CAFs underwent a reverse Warburg effect when co-cultured with PC cells, represented by enhanced aerobic glycolytic metabolism, while shikonin reduced aerobic glycolysis in CAFs by reducing their glucose uptake, ATP concentration, lactate production and secretion, and glycolytic protein expression. Regarding the mechanism underlying these sensitizing effects, shikonin suppressed monocarboxylate transporter 4 (MCT4) expression and cellular membrane translocation to inhibit aerobic glycolysis in CAFs. Overexpression of MCT4 accordingly reversed the inhibitory effects of shikonin on PC cell-induced transactivation and aerobic glycolysis in CAFs, and reduced its sensitizing effects. Furthermore, shikonin promoted the effects of gemcitabine in reducing the growth of tumors derived from PC cells and CAF co-inoculation in BALB/C mice, with no significant systemic toxicity. CONCLUSION: These results indicate that shikonin reduced MCT4 expression and activation, resulting in inhibition of aerobic glycolysis in CAFs and overcoming CAF-induced gemcitabine resistance in PC. Shikonin is a promising chemosensitizing phytochemical agent when used in combination with gemcitabine for PC treatment. The results suggest that disrupting the metabolic coupling between cancer cells and stromal cells might provide an attractive strategy for improving gemcitabine efficacy.


Assuntos
Fibroblastos Associados a Câncer , Naftoquinonas , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Gencitabina , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias Pancreáticas/patologia , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Ácido Láctico/uso terapêutico , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo
13.
Phytomedicine ; 123: 155185, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134863

RESUMO

BACKGROUND: Elemene, an active anticancer extract derived from Curcuma wenyujin, has well-documented anticarcinogenic properties. Nevertheless, the role of elemene in prostate cancer (PCa) and its underlying molecular mechanism remain elusive. PURPOSE: This study focuses on investigating the anti-PCa effects of elemene and its underlying mechanisms. METHODS: Cell-based assays, including CCK-8, scratch, colony formation, cell cycle, and apoptosis experiments, to comprehensively assess the impact of elemene on PCa cells (LNCaP and PC3) in vitro. Additionally, we used a xenograft model with PC3 cells in nude mice to evaluate elemene in vivo efficacy. Targeted metabolomics analysis via HILIC-MS/MS was performed to investigate elemene potential target pathways, validated through molecular biology experiments, including western blotting and gene manipulation studies. RESULTS: In this study, we discovered that elemene has remarkable anti-PCa activity in both in vitro and in vivo settings, comparable to clinical chemotherapeutic drugs but with fewer side effects. Using our established targeted metabolomics approach, we demonstrated that ß-elemene, elemene's primary component, effectively inhibits glycolysis in PCa cells by downregulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression. Furthermore, we found that ß-elemene accomplishes this downregulation by upregulating p53 and FZR1. Knockdown and overexpression experiments conclusively confirmed the pivotal role of PFKFB3 in mediating ß-elemene's anti-PCa activity. CONCLUSION: This finding presents compelling evidence that elemene exerts its anti-PCa effect by suppressing glycolysis through the downregulation of PFKFB3. This study not only improves our understanding of elemene in PCa treatment but also provides valuable insights for developing more effective and safer therapies for PCa.


Assuntos
Neoplasias da Próstata , Sesquiterpenos , Espectrometria de Massas em Tandem , Masculino , Animais , Camundongos , Humanos , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Glicólise , Proliferação de Células , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/farmacologia
14.
Signal Transduct Target Ther ; 8(1): 425, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37945593

RESUMO

Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.


Assuntos
Neoplasias , Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/uso terapêutico , Transporte Ativo do Núcleo Celular/genética , Carioferinas/genética , Carioferinas/metabolismo , Carioferinas/uso terapêutico , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Neoplasias/metabolismo , Proteína ran de Ligação ao GTP
15.
Int J Med Mushrooms ; 25(12): 65-80, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37947065

RESUMO

The optimal cultivation conditions and chemical components of Poria cocos fruiting bodies were examined by employing the single factor and response surface methods to screen for optimal conditions for artificial cultivation. The differences in chemical composition among the fruiting bodies, fermented mycelium, and sclerotia of P. cocos were compared using UV spectrophotometry and high-performance liquid chromatography (HPLC). The optimal growth conditions for P. cocos fruiting bodies were 28.5°C temperature, 60% light intensity, and 2.5 g pine sawdust, which resulted in the production of numerous basidiocarps and basidiospores under microscopic examination. Polysaccharides, triterpenoids, and other main active components of P. cocos were found in the fruiting bodies, sclerotia, and fermented mycelium. The triterpenoid components of the fruiting bodies were consistent with those of the sclerotia. The content of pachymic acid in the fruiting bodies was significantly higher than that in the sclerotia, with a value of 33.37 ± 0.1902 mg/g. These findings provide novel insights into the sexual breeding and comprehensive development and utilization of P. cocos.


Assuntos
Wolfiporia , Wolfiporia/química , Cromatografia Gasosa , Micélio/química , Cromatografia Líquida de Alta Pressão , Carpóforos
16.
J Cancer Res Clin Oncol ; 149(20): 17897-17919, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955686

RESUMO

BACKGROUND: The incidence of skin cutaneous melanoma (SKCM), one of the most aggressive and lethal skin tumors, is increasing worldwide. However, for advanced SKCM, we still lack an accurate and valid way to predict its prognosis, as well as novel theories to guide the planning of treatment options for SKCM patients. Lactylation (LAC), a novel post-translational modification of histones, has been shown to promote tumor growth and inhibit the antitumor response of the tumor microenvironment (TME) in a variety of ways. We hope that this study will provide new ideas for treatment options for SKCM patients, as well as research on the molecular mechanisms of SKCM pathogenesis and development. METHODS: At the level of the RNA sequencing set (TCGA, GTEx), we used differential expression analysis, LASSO regression analysis, and multifactor Cox regression analysis to screen for prognosis-related genes and calculate the corresponding LAC scores. The content of TME cells in the tumor tissue was calculated using the CIBERSORT algorithm, and the TME score was calculated based on its results. Finally, the LAC-TME classifier was established and further analyzed based on the two scores, including the construction of a prognostic model, analysis of clinicopathological characteristics, and correlation analysis of tumor mutation burden (TMB) and immunotherapy. Based on single-cell RNA sequencing data, this study analyzed the cellular composition in SKCM tissues and explored the role of LAC scores in intercellular communication. To validate the functionality of the pivotal gene CLPB in the model, cellular experiments were ultimately executed. RESULTS: We screened a total of six prognosis-related genes (NDUFA10, NDUFA13, CLPB, RRM2B, HPDL, NARS2) and 7 TME cells with good prognosis. According to Kaplan-Meier survival analysis, we found that the LAClow/TMEhigh group had the highest overall survival (OS) and the LAChigh/TMElow group had the lowest OS (p value < 0.05). In further analysis of immune infiltration, tumor microenvironment (TME), functional enrichment, tumor mutational load and immunotherapy, we found that immunotherapy was more appropriate in the LAClow/TMEhigh group. Moreover, the cellular assays exhibited substantial reductions in proliferation, migration, and invasive potentials of melanoma cells in both A375 and A2058 cell lines upon CLPB knockdown. CONCLUSIONS: The prognostic model using the combined LAC score and TME score was able to predict the prognosis of SKCM patients more consistently, and the LAC-TME classifier was able to significantly differentiate the prognosis of SKCM patients across multiple clinicopathological features. The LAC-TME classifier has an important role in the development of immunotherapy regimens for SKCM patients.


Assuntos
Aspartato-tRNA Ligase , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/terapia , Prognóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Microambiente Tumoral/genética , Biomarcadores , Biomarcadores Tumorais/genética
17.
Ginekol Pol ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37994809

RESUMO

OBJECTIVES: We developed a new Bakri balloon tamponade (BBT) placement technique after vaginal delivery, which aimed to be faster without balloon slippage. This study compared the new method with standard placement of BBT in women with postpartum hemorrhage (PPH) after vaginal delivery. MATERIAL AND METHODS: This study was undertaken of women who underwent vaginal delivery at the obstetrics and gynecology departments of the Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan Provincial Hospital for Women and Children, and Si Chuan JINXIN Women and Children Hospital between January 2014 and December 2020. Women who underwent BBT for PPH were grouped according to placement method into the old-BBT group and the new-BBT group. RESULTS: Of 20487 childbirths by vaginal delivery, 512 (2.50%) had PPH, 77 women underwent BBT (old-BBT n = 28, new-BBT n = 49). Background characteristics were similar except prothrombin time (PT, p < 0.01) and activated partial thromboplastin time (APTT, p < 0.004) were lower in the new-BBT group than the old-BBT group. The operation time was shorter in the new-BBT group (p < 0.001) with less bleeding (p < 0.003) and saline injection (p < 0.001). A balloon slippage was less likely (p < 0.008) and postoperative bleeding (p < 0.01), transfusion rate (p < 0.03), transfusion volume (p < 0.002), and hospital stay was lower in the new-BBT group (p < 0.015). Multivariate analysis suggested PT (OR = 0.039, 95% CI: 0.002-0.730, p < 0.030), international normalized ratio (OR = 8.244, 95% CI: 3.807-17.850, p < 0.009), and BBT method (OR = 5.200, 95% CI: 1.745-15.493, p < 0.003), were associated with requiring a blood transfusion. CONCLUSIONS: This method of BBT placement reduced operation time, balloon slippage, bleeding, and hospital stay in women with PPH after vaginal delivery.

18.
J Nanobiotechnology ; 21(1): 367, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805588

RESUMO

Periodontitis is a common public health problem worldwide and an inflammatory disease with irregular defect of alveolar bone caused by periodontal pathogens. Both antibacterial therapy and bone regeneration are of great importance in the treatment of periodontitis. In this study, injectable and thermosensitive hydrogels with 3D networks were used as carriers for controlled release of osteo-inductive agent (BMP-2) and Near Infrared Region-II (NIR-II) phototherapy agents (T8IC nano-particles). T8IC nano-particles were prepared by reprecipitation and acted as photosensitizer under 808 nm laser irradiation. Besides, we promoted photodynamic therapy (PDT) through adding H2O2 to facilitate the antibacterial effect instead of increasing the temperature of photothermal therapy (PTT). Hydrogel + T8IC + Laser + BMP-2 + H2O2 incorporated with mild PTT (45 °C), enhanced PDT and sustained release of BMP-2. It was present with excellent bactericidal effect, osteogenic induction and biosafety both in vitro and in vivo. Besides, immunohistochemistry staining and micro-CT analyses had confirmed that PTT and PDT could promote bone regeneration through alleviating inflammation state. Altogether, this novel approach with synergistic antibacterial effect, anti-inflammation and bone regeneration has a great potential for the treatment of periodontitis in the future.


Assuntos
Hidrogéis , Periodontite , Humanos , Hidrogéis/farmacologia , Peróxido de Hidrogênio/farmacologia , Fototerapia , Regeneração Óssea , Antibacterianos/farmacologia , Periodontite/tratamento farmacológico
19.
Food Res Int ; 173(Pt 1): 113267, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803580

RESUMO

This study aimed to use edible scaffolds as a platform for animal stem cell expansion, thus constructing block-shaped cell culture meat. The tea polyphenols (TP)-coated 3D scaffolds were constructed of sodium alginate (SA) and gelatin (Gel) with good biocompatibility and mechanical support. Initially, the physicochemical properties and mechanical properties of SA-Gel-TP scaffolds were measured, and the biocompatibility of the scaffolds was evaluated by C2C12 cells. SEM results showed that the scaffold had a porous laminar structure with TP particles attached to the surface, while FT-IR results also demonstrated the encapsulation of TP coating on the scaffold. In addition, the porosity of all scaffolds was higher than 40% and the degradation rate during the incubation cycle was less than 40% and the S2-G1-TP0.1-3 h scaffold has excellent cell adhesion and extension. Subsequently, we inoculated rabbit skeletal muscle myoblasts (RbSkMC) on the scaffold and induced differentiation. The results showed good adhesion and extension behavior of RbSkMC on S2-G1-TP0.1-3 h scaffolds with high expression of myogenic differentiation proteins and genes, and SEM results confirmed the formation of myotubes. Additionally, the adhesion rate of cells on scaffolds with TP coating was 1.5 times higher than that on scaffolds without coating, which significantly improved the cell proliferation rate and the morphology of cells with extension on the scaffolds. Furthermore, rabbit-derived cultured meat had similar appearance and textural characteristics to fresh meat. These conclusions indicate the high potential of the scaffolds with TP coating as a platform for the production of cultured meat products.


Assuntos
Alginatos , Gelatina , Animais , Coelhos , Gelatina/química , Alginatos/química , Alicerces Teciduais/química , Polifenóis , Espectroscopia de Infravermelho com Transformada de Fourier , Carne , Chá/química
20.
Molecules ; 28(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894498

RESUMO

High glucose inhibits oral keratinocyte proliferation. Diabetes can lead to delayed oral wound healing and periodontal disease. L-Arginine, one of the most versatile amino acids, plays an important role in wound healing, organ maturation, and development. In this study, L-Arginine was found to enhance oral keratinocyte proliferation under high-glucose conditions. RNA sequencing analysis discovered a significant number of genes differentially upregulated following L-Arginine treatment under high-glucose conditions. Cytochrome P450 family 1 subfamily A member 1 (CYP1A1) was the most significantly upregulated gene at 24 and 48 h after L-Arginine treatment. Gene Ontology enrichment analysis found that cell proliferation- and mitosis-related biological processes, such as mitotic nuclear division, mRNA processing, and positive regulation of cell cycle processes, were significantly upregulated. Pathway enrichment analysis found that S-phase kinase-associated protein 2 (SKP2) and serine- and arginine-rich splicing factor 5 (SRSF5) were the top upregulated genes in cell cycle and spliceosome pathways, respectively. Indirect immunofluorescent cytochemistry confirmed increased protein levels of CYP1A1, SKP2, and SRSF5 after L-Arginine treatment. Knockdown of CYP1A1, SKP2, and SRSF5 abolished the enhanced proliferative effect of L-Arginine on oral keratinocytes under high-glucose conditions. In conclusion, L-Arginine enhances oral keratinocyte proliferation under high-glucose conditions via upregulation of CYP1A1, SKP2, and SRSF5, suggesting that supplemental L-Arginine in oral care products may be beneficial for oral tissue repair and regeneration.


Assuntos
Citocromo P-450 CYP1A1 , Proteínas Quinases Associadas a Fase S , Regulação para Cima , Proteínas Quinases Associadas a Fase S/genética , Citocromo P-450 CYP1A1/metabolismo , Proliferação de Células , Queratinócitos/metabolismo , Arginina/metabolismo , Glucose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA