Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Exp Bot ; 73(9): 2859-2874, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35560205

RESUMO

Vegetable oils are an indispensable nutritional component of the human diet as well as important raw materials for a variety of industrial applications such as pharmaceuticals, cosmetics, oleochemicals, and biofuels. Oil plant genomes are highly diverse, and their genetic variation leads to a diversity in oil biosynthesis and accumulation along with agronomic traits. This review discusses plant oil biosynthetic pathways, current state of genome assembly, polyploidy and asymmetric evolution of genomes of oil plants and their wild relatives, and research progress of pan-genomics in oil plants. The availability of complete high-resolution genomes and pan-genomes has enabled the identification of structural variations in the genomes that are associated with the diversity of agronomic and environment fitness traits. These and future genomes also provide powerful tools to understand crop evolution and to harvest the rich natural variations to improve oil crops for enhanced productivity, oil quality, and adaptability to changing environments.


Assuntos
Genoma de Planta , Poliploidia , Produtos Agrícolas/genética , Genômica
2.
Comput Biol Med ; 138: 104929, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655900

RESUMO

Cholera is a severe small intestine bacterial disease caused by consumption of water and food contaminated with Vibrio cholera. The disease causes watery diarrhea leading to severe dehydration and even death if left untreated. In the past few decades, V. cholerae has emerged as multidrug-resistant enteric pathogen due to its rapid ability to adapt in detrimental environmental conditions. This research study aimed to design inhibitors of a master virulence gene expression regulator, HapR. HapR is critical in regulating the expression of several set of V. cholera virulence genes, quorum-sensing circuits and biofilm formation. A blind docking strategy was employed to infer the natural binding tendency of diverse phytochemicals extracted from medicinal plants by exposing the whole HapR structure to the screening library. Scoring function criteria was applied to prioritize molecules with strong binding affinity (binding energy < -11 kcal/mol) and as such two compounds: Strychnogucine A and Galluflavanone were filtered. Both the compounds were found favourably binding to the conserved dimerization interface of HapR. One rare binding conformation of Strychnogucine A was noticed docked at the elongated cavity formed by α1, α4 and α6 (binding energy of -12.5 kcal/mol). The binding stability of both top leads at dimer interface and elongated cavity was further estimated using long run of molecular dynamics simulations, followed by MMGB/PBSA binding free energy calculations to define the dominance of different binding energies. In a nutshell, this study presents computational evidence on antibacterial potential of phytochemicals capable of directly targeting bacterial virulence and highlight their great capacity to be utilized in the future experimental studies to stop the evolution of antibiotic resistance evolution.


Assuntos
Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Compostos Fitoquímicos , Percepção de Quorum , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
3.
Neurochem Res ; 46(5): 1058-1067, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761044

RESUMO

Albicanol is a natural terpenoid derived from Dryopteris fragrans. Herein, we assessed the ability of Albicanol to protect against oxidative stress-induced senescence. Using a murine model of D-galactose (D-gal)-induced aging, we determined that Albicanol treatment can reverse D-gal-mediated learning impairments and behavioral changes, while also remediating brain tissue damage in treated mice. We found that serum SOD, CAT, GSH-Px, and T-AOC levels were significantly decreased in aging mice, and that Albicanol treatment significantly increased the serum levels of these antioxidant enzymes. We additionally evaluated the impact of Albicanol treatment on the Keap1/Nrf2/ARE signaling pathway, and found that it was able to decrease Keap1 expression while increasing the expression of Nrf2, thereby activating this signaling pathway, suppressing oxidative damage, and enhancing the expression of downstream target genes including SOD, GSH, GST, HO-1, and NQO1 in this murine aging model system. Albicanol treatment also inhibited the secretion of inflammatory TNF-a and IL-1b. Together, these data indicated that Albicanol can activate Nrf2 pathway-related genes, thereby inhibition of delayed aging by alleviating oxidative stress-induced damage.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/uso terapêutico , Galactose/farmacologia , Naftalenos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Sesquiterpenos/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Expressão Gênica/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
4.
J Pharm Anal ; 10(4): 313-319, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32296570

RESUMO

The recent pandemic of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has raised global health concerns. The viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme controls coronavirus replication and is essential for its life cycle. 3CLpro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV. Therefore, herein, we analysed the 3CLpro sequence, constructed its 3D homology model, and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds. Our analyses revealed that the top nine hits might serve as potential anti- SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.

5.
Artigo em Chinês | WPRIM | ID: wpr-865650

RESUMO

The recent pandemic of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has raised global health concerns. The viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme controls coronavirus replication and is essential for its life cycle. 3CLpro is a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV. Therefore, herein, we analysed the 3CLpro sequence, constructed its 3D homology model, and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds. Our analyses revealed that the top nine hits might serve as potential anti- SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.

6.
PLoS One ; 8(6): e68518, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825699

RESUMO

The Madagascar periwinkle (Catharanthusroseus in the family Apocynaceae) is an important medicinal plant and is the source of several widely marketed chemotherapeutic drugs. It is also commonly grown for its ornamental values and, due to ease of infection and distinctiveness of symptoms, is often used as the host for studies on phytoplasmas, an important group of uncultivated plant pathogens. To gain insights into the characteristics of apocynaceous plastid genomes (plastomes), we used a reference-assisted approach to assemble the complete plastome of C. roseus, which could be applied to other C. roseus-related studies. The C. roseus plastome is the second completely sequenced plastome in the asterid order Gentianales. We performed comparative analyses with two other representative sequences in the same order, including the complete plastome of Coffeaarabica (from the basal Gentianales family Rubiaceae) and the nearly complete plastome of Asclepiassyriaca (Apocynaceae). The results demonstrated considerable variations in gene content and plastome organization within Apocynaceae, including the presence/absence of three essential genes (i.e., accD, clpP, and ycf1) and large size changes in non-coding regions (e.g., rps2-rpoC2 and IRb-ndhF). To find plastome markers of potential utility for Catharanthus breeding and phylogenetic analyses, we identified 41 C. roseus-specific simple sequence repeats. Furthermore, five intergenic regions with high divergence between C. roseus and three other euasterids I taxa were identified as candidate markers. To resolve the euasterids I interordinal relationships, 82 plastome genes were used for phylogenetic inference. With the addition of representatives from Apocynaceae and sampling of most other asterid orders, a sister relationship between Gentianales and Solanales is supported.


Assuntos
Catharanthus/genética , Evolução Molecular , Genoma de Planta , Filogenia , Plastídeos , Catharanthus/classificação
7.
Ann Bot ; 110(5): 953-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22851311

RESUMO

BACKGROUND AND AIMS: Abiotic pollination by wind or water is well established in flowering plants. In some species pollination by rain splashes, a condition known as ombrophily, has been proposed as a floral strategy. However, evidence for this type of abiotic pollination has remained controversial and many reported cases have subsequently been shown to be false. This study investigates ombrophily in the deceptive orchid Acampe rigida to determine the mechanism by which this species is able to maintain high fecundity, despite flowering during the rainy season in south-west China when pollinators are scarce. METHODS: The floral mechanisms promoting rain pollination in A. rigida were observed and described in detail. Controlled pollination experiments and observations of floral visitors were conducted. A field experiment using rain shelters at 14 sites in Guangxi, south-west China, evaluated the contribution of rain pollination to fruit-set. KEY RESULTS: During rainfall, raindrops physically flicked away the anther cap exposing the pollinarium. Raindrops then caused pollinia to be ejected upwards with the strap-like stipe pulling them back and causing them to fall into the stigmatic cavity, resulting in self-pollination. Neither flower nor pollen function were damaged by water. Although A. rigida is self-compatible, it is incapable of autonomous self-pollination without the assistance of rain splashes. The results of the rain-sheltering experiment indicated that rain pollination contributed substantially to increasing fruit-set, although there was variation among sites in the intensity of this effect. CONCLUSIONS: A. rigida flowers during the rainy season, when pollinators are scarce, and ombrophily functions to provide reproductive assurance without compromising opportunities for outcrossing.


Assuntos
Flores/anatomia & histologia , Orchidaceae/fisiologia , Polinização/fisiologia , Chuva , Flores/fisiologia , Frutas/crescimento & desenvolvimento , Endogamia , Orchidaceae/anatomia & histologia , Orchidaceae/crescimento & desenvolvimento , Pólen/fisiologia , Autofertilização
8.
Zhong Yao Cai ; 35(9): 1402-7, 2012 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-23451493

RESUMO

OBJECTIVE: To study the affect regularity of medicinal species and heating time on flavonoids contents in Epimedium cut crude drug. METHODS: Setting processing temperature at 170 degrees C, 39 batches Epimedium cut crude drug of different species were heated for 0, 5, 10 minutes. The contents of epimedin A, B, C, icariin, Baohuoside I in different species of Epimedium were determined by HPLC. The variance analysis was used to study the effect of medicinal species and heating time on the contents change of five major flavonoids. RESULTS: The contents of Epimedin A, B, C were significantly impacted by medicinal species (P < 0.01), and Baohuoside I was also impacted (P < 0. 05). The contents of Epimedin A, B, icariin and Baohuoside I were significantly impacted by heating time (P < 0.01). But the flavonoids contents in Epimedium were not impacted by the interaction effect of heating time and species (P > 0.05). CONCLUSION: The medicinal species and heat processed time are two important influence factors on the flavonoids contents in Epimedium. The contents of Epimedin A, C are abundant in Epimedium pubescens, and the contents of Epimedin B, Baohuoside I are higher in Epimedium brevicornu. After heating, the contents of Epimedin A, B, C are decreased, and icariin, Baohuoside I are increased. This study provides scientific evidences for variety certification, optimizing processing technology, exploring processing mechanism and clinical rational administration.


Assuntos
Medicamentos de Ervas Chinesas/análise , Epimedium/química , Epimedium/classificação , Flavonoides/análise , Tecnologia Farmacêutica/métodos , Análise de Variância , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/isolamento & purificação , Folhas de Planta/química , Plantas Medicinais/química , Controle de Qualidade , Reprodutibilidade dos Testes , Fatores de Tempo
9.
Acta Pharmacol Sin ; 25(7): 907-14, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15210064

RESUMO

AIM: To screen antifungal drug candidates using in vitro and in vivo assays based on type I methionine aminopeptidase from Saccharomyces cerevisiae (ScMetAP1). METHODS: A colorimetric assay suitable for high throughput screening (HTS) using recombinant ScMetAP1 protein expressed in Escherichia coli was established for antifungal lead discovery. A series of pyridine-2-carboxylic acid derivatives were characterized and a chemical library of 12,800 pure organic compounds was screened with the in vitro ScMetAP1 assay. Active compounds from the in vitro assay were further evaluated by a growth inhibition assay on yeast strain with deletion of ScMetAP1 gene map1 in comparison with the wild-type yeast strain and the yeast strain with deletion of type II enzyme (ScMetAP2) gene map2. RESULTS: Active ScMetAP1 inhibitors were identified from HTS. Some of the pyridine-2-carboxylic acid derivatives (compound 2 and 3) had selective inhibition of the growth of map2 deletion yeast and weak inhibition on wild-type yeast growth, while no inhibition on map1 deletion yeast. CONCLUSION: ScMetAP1 is a novel potential target for developing antifungal drugs. The in vitro and in vivo ScMetAP1 assays can serve as tools in discovering antifungal drug candidates.


Assuntos
Aminopeptidases/biossíntese , Antifúngicos/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Saccharomyces cerevisiae/enzimologia , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/isolamento & purificação , Antifúngicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Metionil Aminopeptidases , Proteínas Recombinantes/biossíntese , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA