Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 328: 118123, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554854

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium, recognized as "Shihu" in traditional Chinese medicine, holds a rich history of medicinal utilization documented in the Chinese Pharmacopoeia. Ancient texts like "Shen Nong Ben Cao Jing" extol Dendrobium's virtues as a superior herbal medicine fortifying "Yin" and invigorating the five viscera. Dendrobium is extensively employed for the treatment of gastrointestinal inflammatory disorders, showcasing significant therapeutic efficacy, particularly against ulcerative colitis (UC), within the realm of Chinese ethnopharmacology. Dendrobium plays crucial pharmacological roles due to its rich content of polysaccharides, alkaloids, phenanthrenes, and bibenzyls. Gigantol, a prominent bibenzyl compound, stands out as one of the most vital active constituents within Dendrobium, the gigantol content of Dendrobium leaves can reach approximately 4.79 µg/g. Its significance lies in being recognized as a noteworthy anti-inflammatory compound derived from Dendrobium. AIM OF THE STUDY: Given the pivotal role of gigantol as a primary active substance in Dendrobium, the therapeutic potential of gigantol for gastrointestinal diseases remains enigmatic. Our present investigation aimed to evaluate the therapeutic effects of gigantol on dextran sulfate sodium (DSS)-induced colitis and reveal its potential mechanism in countering UC activity. MATERIALS AND METHODS: The protective efficacy of gigantol against colitis was assessed by examining the histopathological changes and conducting biochemical analyses of colon from DSS-challenged mice. Assessments focused on gigantol's impact on improving the intestinal epithelial barrier and its anti-inflammatory effects in colonic tissues of colitis mice. Investigative techniques included the exploration of the macrophage inflammatory signaling pathway via qPCR and Western blot analyses. In vitro studies scrutinized macrophage adhesion, migration, and chemotaxis utilizing transwell and Zigmond chambers. Furthermore, F-actin and Rac1 activation assays detailed cellular cytoskeletal remodeling. The potential therapeutic target of gigantol was identified and validated through protein binding analysis, competitive enzyme-linked immunosorbent assay (ELISA), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay. The binding sites between gigantol and its target were predicted via molecular docking. RESULTS: Gigantol ameliorated symptoms of DSS-induced colitis, rectified damage to the intestinal barrier, and suppressed the production of pro-inflammatory cytokines in colonic tissues. Intriguingly, gigantol significantly curtailed NF-κB signaling activation in the colons of DSS-induced colitis mice. Notably, gigantol impaired the ß2 integrin-dependent adhesion and migratory capacity of RAW264.7 cells. Moreover, gigantol notably influenced the cytoskeleton remodeling of RAW264.7 cells by suppressing Vav1 phosphorylation and Rac1 activation. Mechanistically, gigantol interacted with ß2 integrin, subsequently diminishing binding affinity with intercellular adhesion molecule-1 (ICAM-1). CONCLUSIONS: In conclusion, these findings elucidate that gigantol ameliorates DSS-induced colitis by antagonizing ß2 integrin-mediated macrophage adhesion, migration, and chemotaxis, thus it may impede macrophage recruitment and infiltration into colonic tissues. This study suggests that gigantol shows promise as a viable candidate for clinical colitis therapy.


Assuntos
Bibenzilas , Colite Ulcerativa , Colite , Guaiacol/análogos & derivados , Camundongos , Animais , Antígenos CD18/metabolismo , Antígenos CD18/uso terapêutico , Colo , Quimiotaxia , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Bibenzilas/farmacologia , Anti-Inflamatórios/efeitos adversos , Macrófagos/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , NF-kappa B/metabolismo
2.
BMC Genomics ; 23(1): 743, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348322

RESUMO

BACKGROUND: The bZIP gene family has important roles in various biological processes, including development and stress responses. However, little information about this gene family is available for Wheel Wingnut (Cyclocarya paliurus).  RESULTS: In this study, we identified 58 bZIP genes in the C. paliurus genome and analyzed phylogenetic relationships, chromosomal locations, gene structure, collinearity, and gene expression profiles. The 58 bZIP genes could be divided into 11 groups and were unevenly distributed among 16 C. paliurus chromosomes. An analysis of cis-regulatory elements indicated that bZIP promoters were associated with phytohormones and stress responses. The expression patterns of bZIP genes in leaves differed among developmental stages. In addition, several bZIP members were differentially expressed under drought stress. These expression patterns were verified by RT-qPCR. CONCLUSIONS: Our results provide insights into the evolutionary history of the bZIP gene family in C. paliurus and the function of these genes during leaf development and in the response to drought stress. In addition to basic genomic information, our results provide a theoretical basis for further studies aimed at improving growth and stress resistance in C. paliurus, an important medicinal plant.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Perfilação da Expressão Gênica
3.
Plant Pathol J ; 38(5): 533-540, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36221925

RESUMO

Thunberg fritillary (Fritillaria thunbergii), a perennial used in traditional Chinese herbal medicine, is a members of the family Liliaceae. The degeneration of germplasm is a severe problem in the production of Fritillaria thunbergii var. chekiangensis. However, no information about viral infections of F. thunbergii var. chekiangensis has been reported. In this study, we sequenced the small RNAs of F. thunbergii var. chekiangensis from leaves and bulbs, and viruses were identified using a phylogenetic analysis and BLAST search for sequence. In addition, multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) was used to rapidly detect viruses in this variety. Our study first reported that five viruses infected F. thunbergii var. chekiangensis. Among them, fritillary virus Y (FVY), lily mottle virus (LMoV), Thunberg fritillary mosaic virus (TFMV), and hop yellow virus (HYV) had been reported in F. thunbergii, while apple stem grooving virus was first reported in the genus Fritillaria. A multiplex RT-PCR method was developed to rapidly test the four viruses FVY, LMoV, TFMV, and HYV in F. thunbergii var. chekiangensis. Our results provide a better understanding of the infection of F. thunbergii var. chekiangensis by viruses and a basic reference for the better design of suitable control measures.

4.
Mitochondrial DNA B Resour ; 6(1): 60-61, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33521267

RESUMO

Meclicope pteleifolia is a traditional medicinal herb and edible plant in Southeast China. Here, we report the complete chloroplast genome of M. pteleifolia. The chloroplast genome is 159,012 bp in length with 38.33% GC content, containing a small single-copy (SSC) region (18,609 bp), a large single-copy (LSC) region (851 bp), and a pair of inverted repeats (IRs: 27,640 bp each). A total of 131 genes were predicted, including 84 protein-coding genes, 8 ribosomal RNA genes, 37 tRNA genes, and 2 pseudogenes. Phylogenetic analysis based on chloroplast genomes of 17 plant species shows that M. pteleifolia is closest to Zanthoxylum and Casimiroa. These complete chloroplast genomes can be subsequently used for researches of Rutaceae.

5.
Bioorg Med Chem Lett ; 26(19): 4753-4756, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27597252

RESUMO

Some cancer cells are resistant to apoptosis, rendering them irresponsive towards apoptosis-inducing chemotherapy drugs. Another mode of action to kill these apoptosis-defective cells is essential and autophagy, a dynamic process that degrades cytoplasmic contents for cellular maintenance, has been considered as one of the alternate routes. A small molecule inducer of autophagy, autophagonizer was reported to induce cell death through a novel process that is independent of extrinsic apoptosis and the normal signaling pathways of autophagy. Here, we describe an efficient synthetic procedure for the autophagonizer. The newly synthesized autophagonizer (DK-1-49) resulted in an accumulation of autophagy-associated LC3-II and enhanced levels of autophagosomes and acidic vacuoles. Furthermore, cell viability was inhibited by autophagic cell death in not only human cancer cells but also Bax/Bak double-knockout cells. These findings highlight that intrinsic apoptosis is not also involved in the induction of cellular death by the autophagonizer suggesting the autophagonizer is a promising candidate for anticancer therapeutics for cancer cells that are resistant to apoptosis-inducing chemotherapy.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Relação Estrutura-Atividade , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
6.
Int Immunopharmacol ; 37: 65-70, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26899347

RESUMO

For centuries, natural products and their derivatives have provided a rich source of compounds for the development of new immunotherapies in the treatment of human disease. Many of these compounds are currently undergoing clinical trials, particularly as anti-oxidative, anti-microbial, and anti-cancer agents. However, the function and mechanism of natural products in how they interact with our immune system has yet to be extensively explored. Natural immune modulators may provide the key to control and ultimately defeat disorders affecting the immune system. They can either up- or down-regulate the immune response with few undesired adverse effects. In this review, we summarize the recent advancements made in utilizing natural products for immunomodulation and their important molecular targets, members of the Toll-like receptor (TLR) family, in the innate immune system.


Assuntos
Produtos Biológicos/farmacologia , Sistema Imunitário/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Imunoterapia/métodos , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Ensaios Clínicos como Assunto , Ácidos Graxos/farmacologia , Humanos , Sistema Imunitário/metabolismo , Imunoterapia/tendências , Medicina Tradicional/métodos , Preparações de Plantas/farmacologia , Probióticos/farmacologia
7.
Cancer Prev Res (Phila) ; 6(8): 843-54, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23803415

RESUMO

Constitutive activation of proinflammatory transcription factors such as STAT3 and NF-κB plays a pivotal role in the proliferation and survival of squamous cell carcinoma of the head and neck (HNSCC). Thus, the agents that can modulate deregulated STAT3 and NF-κB activation have a great potential both for the prevention and treatment of HNSCC. In the present report, we investigated the potential effects of garcinol, an active component of Garcinia indica on various inflammatory mediators involved in HNSCC progression using cell lines and xenograft mouse model. We found that garcinol inhibited constitutively activated STAT3 in HNSCC cells in a time- and dose-dependent manner, which correlated with the suppression of the upstream kinases (c-Src, JAK1, and JAK2) in HNSCC cells. Also, we noticed that the generation of reactive oxygen species is involved in STAT3 inhibitory effect of garcinol. Furthermore, garcinol exhibited an inhibitory effect on the constitutive NF-κB activation, mediated through the suppression of TGF-ß-activated kinase 1 (TAK1) and inhibitor of IκB kinase (IKK) activation in HNSCC cells. Garcinol also downregulated the expression of various gene products involved in proliferation, survival, and angiogenesis that led to the reduction of cell viability and induction of apoptosis in HNSCC cells. When administered intraperitoneally, garcinol inhibited the growth of human HNSCC xenograft tumors in male athymic nu/nu mice. Overall, our results suggest for the first time that garcinol mediates its antitumor effects in HNSCC cells and mouse model through the suppression of multiple proinflammatory cascades.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/prevenção & controle , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Terpenos/farmacologia , Animais , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/prevenção & controle , Citometria de Fluxo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Nus , NF-kappa B/genética , Extratos Vegetais/farmacologia , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA