Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 254: 121372, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430761

RESUMO

Watershed water quality modeling is a valuable tool for managing ammonium (NH4+) pollution. However, simulating NH4+ pollution presents unique challenges due to the inherent instability of NH4+ in natural environment. This study modified the widely-used Soil and Water Assessment Tool (SWAT) model to simulate non-point source (NPS) NH4+ processes, specifically incorporating the simulation of land-to-water NH4+ delivery. The Jiulong River Watershed (JRW) is the study area, a coastal watershed in Southeast China with substantial sewage discharge, livestock farming, and fertilizer application. The results demonstrate that the modified model can effectively simulate the NPS NH4+ processes. It is recommended to use multiple sets of observations to calibrate NH4+ simulation to enhance model reliability. Despite constituting a minor proportion (5.6 %), point source inputs significantly contribute to NH4+ load at watershed outlet (32.4∼51.9 %), while NPS inputs contribute 15.3∼17.3 % of NH4+ loads. NH4+ primarily enters water through surface runoff and lateral flow, with negligible leaching. Average NH4+ land-to-water delivery rate is about 2.35 to 2.90 kg N/ha/a. High delivery rates mainly occur at agricultural areas. Notably, proposed NH4+ mitigation measures, including urban sewage treatment enhancement, livestock manure management improvement, and fertilizer application reduction, demonstrate potential to collectively reduce the NH4+ load at watershed outlet by 1/4 to 1/3 and significantly enhance water quality standard compliance frequency. Insights gained from modeling experience in the JRW offer valuable implications for NH4+ modeling and management in regions with similar climates and significant anthropogenic nitrogen inputs.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Fertilizantes , Esgotos , Reprodutibilidade dos Testes , Monitoramento Ambiental/métodos , Nitrogênio/análise , Qualidade da Água , China , Rios , Poluentes Químicos da Água/análise , Fósforo/análise
2.
J Environ Manage ; 317: 115379, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751236

RESUMO

The construction of cascade reservoirs increases eutrophication and exacerbates algal blooms and thus threatens water quality. Previous studies on the microalgae in reservoir have mainly focused on the spatio-temporal patterns of surface microalgae communities at the horizontal scale, while few studies have simultaneously considered the successions of microalgae in vertical profiles including the sediments and the effects of the nutrients release and microalgae in sediments on microalgae in upper waters. In this study, we investigated the effects of microalgae and physico-chemical parameters in waters and sediments on the successions of vertical microalgae communities in Xipi Reservoir, Southeast China. The seasonal variations in microalgae compositions decreased gradually from the surface water (the dominance of Cryptophyta and Chlorophyta in spring, Chlorophyta and Cyanophyta in summer, and relatively uniform in autumn and winter) to the sediment (the dominance of Bacillariophyta throughout the year), which was influenced by the variations of physico-chemical factors in different layers. The spatio-temporal variations in microalgae communities in waters was attributing to not only the heterogeneities of the stratification, and the physico-chemical factors such as water temperature, pH, and nutrient concentrations, especially for phosphorus in the water column, but also the combinations of phosphorus release and microalgae composition in sediments. Environmental changes would be especially problematic for microalgae groups such as Cryptophyta, Dinophyta and Chlorophyta that were sensitive to the changes of temperature and nutrients. Our results are helpful for an extensive understanding of the dynamics of microalgae communities in reservoir, and contribute to reservoir management for ensuring the safety of drinking water.


Assuntos
Clorófitas , Microalgas , China , Monitoramento Ambiental , Eutrofização , Nitrogênio/análise , Fósforo/análise , Fitoplâncton , Estações do Ano
3.
Chemosphere ; 270: 128665, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33121808

RESUMO

Nitrogen (N) and phosphorus (P) are vital nutrients regulating mangrove productivity and coastal ecosystems. Understanding of the nutrient cycling and interaction between mangroves and estuary is limited. Here we show tidal-driven nutrient exchange and a dynamic source-sink pattern across the mangrove-estuary interface. Lateral nutrient fluxes were quantified based on hourly concentrations observed at a tidal creek outlet during 2016-2018 and water mass estimated by a hydrodynamic model (FVCOM). The results of nutrient fluxes suggested that mangroves always serve as a source of ammonium (NH4-N) and dissolved reactive P (DRP) to estuary, but as a strong nitrate sink (NO3-N). Dissolved organic components (DON and DOP) shifted from net efflux (source) in spring to net influx (sink) in summer, likely due to the changing balance of P input and biological and physicochemical processes. Mangroves decreased the overall loading of dissolved inorganic N (DIN), dissolved total N (DTN) and total P (TP) to the estuary. Nevertheless, the effluents (aquaculture wastewater and domestic sewage) discharged from the upstream area during ebb tide increased the export of nutrients, especially NH4-N and DRP, offsetting the role of mangrove on mitigating coastal eutrophication.


Assuntos
Ecossistema , Estuários , Monitoramento Ambiental , Nitrogênio/análise , Nutrientes , Fósforo/análise
4.
Environ Sci Pollut Res Int ; 23(23): 24166-24177, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27646444

RESUMO

Many coastal rivers have a system of cascade reservoirs, but the role of these reservoirs in regulating nutrient transport from watershed to coast is still unknown. In this study, phosphorus (P) in surface water and top sediment was investigated along the North Jiulong River (southeast China) under three hydrological conditions (high flow, medium flow and low flow) in 2012-2013, and P dynamics in a cascade reservoir (Xipi Reservoir) were studied on a monthly scale. Results showed that the concentrations of dissolved reactive phosphorus (DRP) consistently decreased longitudinally in the upper river with the lowest values observed in the section of cascade reservoirs, likely due to tributary inputs and in situ uptakes. The decrease was most rapid during base flow when DRP was highest in the free-flowing river section and lowest in cascade reservoirs. Results from monthly monitoring on the Xipi Reservoir showed general downriver decreases in DRP, total particulate phosphorus (TPP) and total phosphorus (TP) in the riverine zone and transition zone. Mass balance results on an annual basis suggest that the Xipi Reservoir (lacustrine zone) was an overall sink for TPP (6 % retention) but somewhat a source of DRP (-0.3 %) with TP retention (1 %). Even scaled up to the whole cascade reservoir system, P retention was low compared with worldwide reservoirs, which we ascribe to the high P loading and short hydraulic residence time. Nevertheless, major processes controlling P retention in coastal rivers with cascade reservoirs varied from sedimentation in the dry-cold season to biotic transformation in the wet-warm season, thereby affecting loading and composition of P from watershed to the coast. This study highlights the hydrological controls on the role of cascade reservoirs in regulating P retention and downriver fluxes in different seasons.


Assuntos
Monitoramento Ambiental/métodos , Hidrologia/métodos , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , China
5.
Environ Pollut ; 219: 490-500, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27241745

RESUMO

Increases in water temperature, as a result of climate change, may influence biogeochemical cycles, sediment-water fluxes and consequently environmental sustainability. Effects of rising temperature on dynamics of nitrate, nitrite, ammonium, dissolved inorganic nitrogen (DIN), dissolved reactive phosphorus (DRP), dissolved organic carbon (DOC) and gaseous nitrogen (N2 and N2O) were examined in a subtropical river (the Jiulong River, southeast China) by microcosm experiments. Slurry sediments and overlying water were collected from three continuous cascade reservoirs, and laboratory incubations were performed at four temperature gradients (5 °C, 15 °C, 25 °C and 35 °C). Results indicated: (1) warming considerably increased sediment ammonium, DIN and DOC fluxes to overlying water; (2) warming increased retention of nitrate, and to a lesser extent, nitrite, corresponding to increases in N2 and N2O emission; (3) DRP was retained but released from Fe/Al-P enriched sediments at high temperature (35 °C) due to enhanced coupled transformation of carbon and nitrogen with oxygen deficiency. Using relationships between sediment fluxes and temperature, a projected 2.3°C-warming in future would increase ammonium flux from sediment by 7.0%-16.8%, while increasing nitrate flux into sediment by 8.9%-28.6%. Moreover, substrates (e.g., grain size, carbon availability) influenced nutrient delivery and cycling across cascade reservoirs. This study highlights that warming would increase bioreactive nutrient (i.e., ammonium and phosphate) mobilization with limited gaseous N removal from sediments, consequently deteriorating water quality and increasing eutrophication with future climate change.


Assuntos
Carbono/análise , Sedimentos Geológicos/química , Nitrogênio/análise , Fósforo/análise , Rios/química , Temperatura , Ciclo do Carbono , China , Mudança Climática , Desnitrificação , Recuperação e Remediação Ambiental , Eutrofização , Nitratos/análise , Poluentes Químicos da Água/análise
6.
Appl Microbiol Biotechnol ; 100(10): 4685-98, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26810199

RESUMO

The response of freshwater bacterial community to anthropogenic disturbance has been well documented, yet the studies of freshwater archaeal community are rare, especially in lotic environments. Here, we investigated planktonic and benthic archaeal communities in a human-perturbed watershed (Jiulong River Watershed, JRW) of southeast China by using Illumina 16S ribosomal RNA gene amplicon sequencing. The results of taxonomic assignments indicated that SAGMGC-1, Methanobacteriaceae, Methanospirillaceae, and Methanoregulaceae were the four most abundant families in surface waters, accounting for 12.65, 23.21, 18.58 and 10.97 % of planktonic communities, whereas Nitrososphaeraceae and Miscellaneous Crenarchaeotic Group occupied more than 49 % of benthic communities. The compositions of archaeal communities and populations in waters and sediments were significantly different from each other. Remarkably, the detection frequencies of families Methanobacteriaceae and Methanospirillaceae, and genera Methanobrevibacter and Methanosphaera in planktonic communities correlated strongly with bacterial fecal indicator, suggesting some parts of methanogenic Archaea may come from fecal contamination. Because soluble reactive phosphorus (SRP) and the ratio of dissolved inorganic nitrogen to SRP instead of nitrogen nutrients showed significant correlation with several planktonic Nitrosopumilus- and Nitrosotalea-like OTUs, Thaumarchaeota may play an unexplored role in biogeochemical cycling of river phosphorus. Multivariate statistical analyses revealed that the variation of α-diversity of planktonic archaeal community was best explained by water temperature, whereas nutrient concentrations and stoichiometry were the significant drivers of ß-diversity of planktonic and benthic communities. Taken together, these results demonstrate that the structure of archaeal communities in the JRW is sensitive to anthropogenic disturbances caused by riparian human activities.


Assuntos
Archaea/crescimento & desenvolvimento , Biomassa , Sedimentos Geológicos/microbiologia , Archaea/classificação , China , DNA Arqueal/isolamento & purificação , Euryarchaeota/classificação , Euryarchaeota/crescimento & desenvolvimento , Methanobacteriaceae/classificação , Methanobacteriaceae/crescimento & desenvolvimento , Methanobrevibacter/classificação , Methanobrevibacter/crescimento & desenvolvimento , Methanosarcinales/classificação , Methanosarcinales/crescimento & desenvolvimento , Methanospirillum/classificação , Methanospirillum/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Filogenia , RNA Ribossômico 16S/isolamento & purificação , Rios/microbiologia , Análise de Sequência de DNA , Microbiologia da Água
7.
Huan Jing Ke Xue ; 34(9): 3430-6, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24288986

RESUMO

Sediment phosphorus (P) content and component ratio from 16 sites along the North Jiulong River-reservoir system were analyzed using the Standard Measurement and Test (SMT) procedure. The spatial pattern and characteristics of sediment P and its ecological significance in the Jiulong River-reservoir system were examined in combination with water measurement and watershed information. Total P content in sediments ranged from 387 to 2092 mg x kg(-1) with an average of 1032 mg x kg(-1). Inorganic phosphorus (IP) dominated P in sediment, accounting for 48%-98% of TP, and Fe/Al-bound phosphorus (Fe/Al-P) took 43%-99% of IP. The spatial pattern of sediment showed that TP and Fe/Al-P were higher in upstream and lower in downstream, corresponding to the spatial variation of surface water P and land-based loads from animal waste, human waste and fertilizer loss. Spatial variation of TP in sediment was controlled by Fe/AI-P along the North Jiulong River. The P-rich sediment with a great release potential due to the high ratio of Fe/ Al-P, the typical spatial pattern, and the lower N/P ratio observed in upstream water (where phytoplankton growth tends to be weakly limited by phosphorus), are likely to explain the fact that algal blooms first appear in the upstream and then spread to downstream reservoirs along the North Jiulong River. Present findings concerning sediment P characteristics indicate an important regulating effect and the ecological significance on the process of algal blooms in the Jiulong River.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Fósforo/análise , Poluentes Químicos da Água/análise , China , Eutrofização , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA