Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Acta Biomater ; 155: 635-643, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328129

RESUMO

Non-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-ß (Aß) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aß oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Here, we report an Aß targeted, low-dose X-ray-excitable long-afterglow scintillator (ScNPs@RB/Ab) for efficient deep-brain phototherapy. We demonstrate that the as-synthesized ScNPs@RB/Ab is capable of converting X-rays into visible light to activate the photosensitizers of rose bengal (RB) for Aß oxygenation through the scalp and skull. We show that the ScNPs@RB/Ab persistently emitting visible luminescence can substantially minimize the risk of excessive X-ray exposure dosage. Importantly, peptide KLVFFAED-functionalized ScNPs@RB/Ab shows a blood-brain barrier permeability. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aß burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects. Our study paves a new pathway to develop high-efficiency transcranial AD phototherapy. STATEMENT OF SIGNIFICANCE: Non-invasive phototherapy has been emerging as an ambitious tactic for suppression of amyloid-ß (Aß) self-assembly against Alzheimer's disease (AD). However, it remains a daunting challenge to develop efficient photosensitizers for Aß oxygenation that are activatable in a deep brain tissue through the scalp and skull, while reducing side effects on normal tissues. Herein, we report an Aß targeted, low-dose X-ray-excitable long-afterglow scintillators (ScNPs@RB/Ab) for efficient deep-brain phototherapy. In vivo experimental results validated that ScNPs@RB/Ab alleviated Aß burden and slowed cognitive decline in triple-transgenic AD model mice at extremely low X-ray doses without side effects.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Raios X , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia/métodos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
3.
Acc Chem Res ; 56(1): 37-51, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36533853

RESUMO

X-ray luminescence is an optical phenomenon in which chemical compounds known as scintillators can emit short-wavelength light upon the excitation of X-ray photons. Since X-rays exhibit well-recognized advantages of deep penetration toward tissues and a minimal autofluorescence background in biological samples, X-ray luminescence has been increasingly becoming a promising optical tool for tackling the challenges in the fields of imaging, biosensing, and theragnostics. In recent years, the emergence of nanocrystal scintillators have further expanded the application scenarios of X-ray luminescence, such as high-resolution X-ray imaging, autofluorescence-free detection of biomarkers, and noninvasive phototherapy in deep tissues. Meanwhile, X-ray luminescence holds great promise in breaking the depth dependency of deep-seated lesion treatment and achieving synergistic radiotherapy with phototherapy.In this Account, we provide an overview of recent advances in developing advanced X-ray luminescence for applications in imaging, biosensing, theragnostics, and optogenetics neuromodulation. We first introduce solution-processed lead halide all-inorganic perovskite nanocrystal scintillators that are able to convert X-ray photons to multicolor X-ray luminescence. We have developed a perovskite nanoscintillator-based X-ray detector for high-resolution X-ray imaging of the internal structure of electronic circuits and biological samples. We further advanced the development of flexible X-ray luminescence imaging using solution-processable lanthanide-doped nanoscintillators featuring long-lived X-ray luminescence to image three-dimensional irregularly shaped objects. We also outline the general principles of high-contrast in vivo X-ray luminescence imaging which combines nanoscintillators with functional biomolecules such as aptamers, peptides, and antibodies. High-quality X-ray luminescence nanoprobes were engineered to achieve the high-sensitivity detection of various biomarkers, which enabled the avoidance of interference from the biological matrix autofluorescence and photon scattering. By marrying X-ray luminescence probes with stimuli-responsive materials, multifunctional theragnostic nanosystems were constructed for on-demand synergistic gas radiotherapy with excellent therapeutic effects. By taking advantage of the capability of X-rays to penetrate the skull, we also demonstrated the development of controllable, wireless optogenetic neuromodulation using X-ray luminescence probes while obviating damage from traditional optical fibers. Furthermore, we discussed in detail some challenges and future development of X-ray luminescence in terms of scintillator synthesis and surface modification, mechanism studies, and their other potential applications to provide useful guidance for further advancing the development of X-ray luminescence.


Assuntos
Luminescência , Raios X , Biomarcadores , Diagnóstico por Imagem , Técnicas Biossensoriais , Técnicas de Diagnóstico Molecular
4.
Acc Chem Res ; 53(11): 2692-2704, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33103883

RESUMO

Owing to their unique features, the past decade has witnessed rapid developments of lanthanide-activated nanoparticles for biological applications. These include highly tunable upconverting and downshifting photoluminescence when illuminated in deep tissue, excellent photostability against blinking and bleaching effects, biocompatibility through versatile surface modification, and ease of achieving multifunctionality, as well as satisfactory signal output. These attributes make lanthanide-doped nanoparticles an ideal toolbox for advanced bioimaging and next-generation therapeutics.The interest in lanthanide-doped nanoparticles for biomedical research arises from their unique optical properties in response to deep-tissue-penetrable light sources. Upon near-infrared irradiation, these nanoparticles with properly doped emitters display photon upconversion with large anti-Stokes shifts and broad-spectrum tunability from the ultraviolet to the visible. It is also possible to achieve orthogonal photoluminescence with variations in wavelength and lifetime. Coupled with surface ligands, dyes, biomolecules, or other types of functional nanomaterials, lanthanide-doped nanoparticles offer new opportunities for applications in bioimaging, advanced oncotherapy, and neuromodulation. Given the possibility of locating downshifting luminescence at "biological transmission windows", exquisite design of lanthanide-doped nanoparticles also enables deep-tissue imaging with high spatial resolution. In addition, these nanoparticles can respond to high-energy photons, such as X-rays, to trigger nonradioactive and radiative pathways, making it possible to develop high-sensitivity X-ray detectors. Precise control of paramagnetic lanthanide ions in nanocrystal lattices also provides advanced materials for high-performance magnetic resonance imaging in medical diagnostics and biomedical research. Full consideration of fundamental attributes of lanthanide-doped nanoparticles will facilitate the design of multifunctional and sensitive probes and improve diagnostic and therapeutic outcomes.In this Account, we categorize various lanthanide-activation strategies into three modes: near-infrared excitation, X-ray irradiation, and magnetic field stimulation. We introduce energy manipulations in upconverting, downshifting, and persistence luminescence in spectral and time domains and discuss how they can be applied in biological practices. We assess general design principles for lanthanide-activated nanosystems with multiple modalities of bioimaging, oncotherapy, and neuromodulation. We also review the current state-of-the-art in the field of lanthanide-based theranostic nanoplatforms, with particular emphasis on energy conversion and nano-/biointerfacing as well as emerging bioapplications. In this context, we also highlight recent advances in controlling optical properties of nanoplatforms for single- or multimodal bioimaging, stimulus-responsive phototherapy, and optogenetics. Finally, we discuss future opportunities and challenges of this exciting research field.


Assuntos
Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Animais , Meios de Contraste/química , Raios Infravermelhos , Nanopartículas/uso terapêutico , Nanopartículas/toxicidade , Neoplasias/tratamento farmacológico , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica , Microambiente Tumoral
5.
Adv Healthc Mater ; 4(15): 2291-6, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26377855

RESUMO

Paper-supported cell culture is an unprecedented development for advanced bioassays. This study reports a strategy for in vitro engineering of cell-compatible paper chips that allow for adherent cell culture, quantitative assessment of drug efficiency, and label-free sensing of intracellular molecules via paper spray mass spectrometry. The polycarbonate paper is employed as an excellent alternative bioscaffold for cell distribution, adhesion, and growth, as well as allowing for fluorescence imaging without light scattering. The cell-cultured paper chips are thus amenable to fabricate 3D tissue construction and cocultures by flexible deformation, stacks and assembly by layers of cells. As a result, the successful development of cell-compatible paper chips subsequently offers a uniquely flexible approach for in situ sensing of live cell components by paper spray mass spectrometry, allowing profiling the cellular lipids and quantitative measurement of drug metabolism with minimum sample pretreatment. Consequently, the developed paper chips for adherent cell culture are inexpensive for one-time use, compatible with high throughputs, and amenable to label-free and rapid analysis.


Assuntos
Técnicas de Cultura de Células , Engenharia Celular/métodos , Avaliação Pré-Clínica de Medicamentos , Espectrometria de Massas , Animais , Materiais Biocompatíveis/química , Bioensaio , Adesão Celular , Camundongos , Células NIH 3T3 , Papel , Cimento de Policarboxilato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA