Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 223(Pt A): 173-183, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36306918

RESUMO

As a common macromolecular carbohydrate, pectin has a strong affinity for Pb2+. An ethylenediamine modified pectin (EP48) with 48 % of amidation was prepared and exhibited great removal efficiency towards Pb2+ in our previous study. However, the EP48 has drawbacks in adsorption including low mechanical strength and difficulty in separation. In this study, EP48 was compounded with sodium alginate (Alg) and Fe3O4 to synthesize EP48/Alg/Fe3O4 microsphere. The physicochemical properties and Pb2+ adsorption characteristics of microsphere were analyzed. It was found that the microsphere exhibited good thermal stability, mechanical strength, porous structure, as well as acid tolerance. The pseudo-second-order model well described the kinetics of adsorption process, indicating the chemical adsorption is dominant. The Langmuir model fitted the experimental data well, and the maximum adsorption capacity reached 175.19 mg/g. Adsorption-desorption experiments showed that the removal rate of the microsphere maintained over 98.9 % after 10 cycles. The X-ray photoelectron spectroscopy (XPS) analyses revealed that the potential adsorption mechanism included ion-exchange and chelation. The above results suggested its potential use for the removal of Pb2+ from wastewater.


Assuntos
Alginatos , Poluentes Químicos da Água , Alginatos/química , Pectinas , Poluentes Químicos da Água/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA