Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 8: 694219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604348

RESUMO

Sleep deprivation (SD) may lead to serious myocardial injury in cardiovascular diseases. Saponins extracted from the roots of Panax notoginseng, a traditional Chinese medicine beneficial to blood circulation and hemostasis, are the main bioactive components exerting cardiovascular protection in the treatment of heart disorders, such as arrhythmia, ischemia and reperfusion injury, and cardiac hypertrophy. This study aimed to explore the protective effect of stem-leaf saponins from Panax notoginseng (SLSP) on myocardial injury in SD mice. SD was induced by a modified multi-platform method. Cardiac morphological changes were assessed by hematoxylin and eosin (H&E) staining. Heart rate and ejection fraction were detected by specific instruments. Serum levels of atrial natriuretic peptide (ANP) and lactate dehydrogenase (LDH) were measured with biochemical kits. Transmission electron microscopy (TEM), immunofluorescent, and Western blotting analysis were used to observe the process and pathway of autophagy and apoptosis in heart tissue of SD mice. In vitro, rat H9c2 cells pretreated with rapamycin and the effect of SLSP were explored by acridine orange staining, transient transfection, flow cytometry, and Western blotting analysis. SLSP prevented myocardial injury, such as morphological damage, accumulation of autophagosomes in heart tissue, abnormal high heart rate, serum ANP, and serum LDH induced by SD. In addition, it reversed the expressions of proteins involved in the autophagy and apoptosis and activated PI3K/Akt/mTOR signaling pathway that is disturbed by SD. On H9c2 cells induced by rapamycin, SLSP could markedly resume the abnormal autophagy and apoptosis. Collectively, SLSP attenuated excessive autophagy and apoptosis in myocardial cells in heart tissue induced by SD, which might be acted through activating PI3K/Akt/mTOR signaling pathway.

2.
AAPS PharmSciTech ; 21(8): 316, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33174133

RESUMO

Borneol can enhance the bioavailability of several other drugs by opening the blood-brain barrier and inhibiting P-glycoprotein (P-gp) efflux. However, whether borneol will impact the bioavailability and the mechanism of compound Danshen colon-specific osmotic pump capsule (CDCOPC) remains unclear. This study aimed to determine the effects of borneol on the in vitro release and in vivo pharmacokinetic characteristics of CDCOPC. Besides, the in vitro release behavior of CDCOPC was further assessed by chromatographic fingerprints. The in vitro release studies showed that borneol followed the zero-order release and hardly impacted the in vitro release of Salvia miltiorrhiza and Panax notoginseng in CDCOPC. Moreover, as revealed from the similarity results of fingerprints, the in vitro release of different components of CDCOPC was almost simultaneous. Compared with the commercially available tablets, the pharmacokinetics studies suggested that both CDCOPCs containing and lacking borneol could significantly prolong the retention time of these effective components; their average relative bioavailability values increased to 448.70% and 350.97%, respectively. Notably, borneol significantly improved the relative bioavailability of some components of CDCOPC, such as salvianolic acid B (SAB), tanshinone IIA (Tan IIA), notoginsenoside R1 (R1), ginsenoside Rg1 (Rg1), and ginsenoside Re (Re) from CDCOPC, while it slightly impacted ginsenoside Rb1 (Rb1) and ginsenoside Rd (Rd). Summarily, borneol is capable of improving the bioavailability of some effective components in CDCOPC, which is critical to design with CDCOPC for enhanced bioavailability. This study could also help reveal the composition principle of the compound Danshen formula (CDF).


Assuntos
Canfanos/farmacologia , Medicamentos de Ervas Chinesas/farmacocinética , Animais , Disponibilidade Biológica , Cães , Técnicas In Vitro , Masculino , Osmose , Salvia miltiorrhiza/química
3.
AAPS PharmSciTech ; 20(7): 301, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31485857

RESUMO

Huperzine A (hup A), extracted from the Chinese medicinal plant Huperzia serrata, is a reversible and highly selective second-generation acetylcholine esterase (AchE) inhibitor for treating Alzheimer's disease (AD), but it suffers from low bioavailability in the brain. This study aimed to develop a nasal temperature and pH dual-responsive in situ gel delivery system based on microemulsion of hup A (hup A-M-TPISG). The optimal formulation was obtained by central composite design and response surface methodology. The optimized mucoadhesive formulation, hup A-M-TPISG, was composed of pluronic F127 (20.80%), pluronic F68 (2.8%), and chitosan (0.88%) as the gel matrix, which could gelatinize under physiological conditions (29-34°C, pH 6.5) because of its temperature and pH responsiveness. The optimized hup A-M-TPISG formulation was further evaluated by in vitro release and in vivo pharmacokinetic studies via microdialysis. The in vitro release study showed continuous and steady drug release from hup A-M-TPISG, which was in accordance with the first-order model. Moreover, the pharmacokinetic results revealed that the optimized formulation for nasal administration, with convenient administration and improved patient compliance, could achieve similar brain-targeting properties as intravenous administration. In conclusion, the hup A-M-TPISG for intranasal administration, as an effective and safe vehicle, could enhance the absorption of hup A in vivo and would be a promising noninvasive alternative for partially improving brain-targeting therapy.


Assuntos
Alcaloides/administração & dosagem , Inibidores da Colinesterase/administração & dosagem , Sistemas de Liberação de Medicamentos , Sesquiterpenos/administração & dosagem , Administração Intranasal , Alcaloides/química , Alcaloides/farmacocinética , Animais , Encéfalo/efeitos dos fármacos , Composição de Medicamentos , Emulsões , Géis , Concentração de Íons de Hidrogênio , Masculino , Ratos , Ratos Sprague-Dawley , Sesquiterpenos/química , Sesquiterpenos/farmacocinética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA