Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(1): 86-90, 2023 Jan 15.
Artigo em Chinês | MEDLINE | ID: mdl-36655669

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease that affects brain function in neonates. At present, mild hypothermia and hyperbaric oxygen therapy are the main methods for the treatment of neonatal HIE; however, they are independent of each other and cannot be combined for synchronous treatment, without monitoring of brain function-related physiological information. In addition, parameter setting of hyperbaric oxygen chamber and mild hypothermia mattress relies on the experience of the medical practitioner, and the parameters remain unchanged throughout the medical process. This article proposes a new device for the treatment of neonatal HIE, which has the modules of hyperbaric oxygen chamber and mild hypothermic mattress, so that neonates can receive the treatment of hyperbaric oxygen chamber and/or mild hypothermic mattress based on their conditions. Meanwhile, it can realize the real-time monitoring of various physiological information, including amplitude-integrated electroencephalogram, electrocardiogram, and near-infrared spectrum, which can monitor brain function, heart rate, rhythm, myocardial blood supply, hemoglobin concentration in brain tissue, and blood oxygen saturation. In combination with an intelligent control algorithm, the device can intelligently regulate parameters according to the physiological information of neonates and give recommendations for subsequent treatment.


Assuntos
Oxigenoterapia Hiperbárica , Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Recém-Nascido , Humanos , Hipotermia Induzida/métodos , Hipotermia/terapia , Encéfalo , Eletroencefalografia , Hipóxia-Isquemia Encefálica/terapia
2.
Biomaterials ; 269: 120533, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33228991

RESUMO

Hypoxia-activated prodrugs (HAPs) promise to mitigate side effects of conventional chemotherapy and to enable precise medication treatment. One challenge facing HAPs-based chemotherapy is prodrug failure in normoxic tumor region. However, current strategies to enhance tumor hypoxia rely on delivery of oxygen-consuming agents and external stimulation, which can impede the optimal application of HAPs. Herein, a novel self-activating nanovesicle, TH-302@BR-Chitosan NPs, is constructed by assembling bilirubin-chitosan conjugate (named as BR-Chitosan) with a HAP, TH-302. It is interesting to find that the BR-Chitosan shows the inherent oxygen-depleting performance, especially in the presence of over expressed H2O2 in tumor area, during which the BR-Chitosan can facily transform into biliverdin-chitosan (BV-Chitosan) and subsequently result in the disassembly of nanovesicles to release and activate the prodrug. Thus, this in situ strengthening hypoxia level of tumor can greatly promote the chemotherapy efficacy of HAPs. Moreover, as the oxidation derivatives of BR-Chitosan, BV-Chitosan exhibits intense absorbance at the range from long wavelength of visible region to near-infrared region, which can be acted as an effective photothermal agent for photothermal therapy (PTT). This biodegradable and self-activating nanovesicle with concise formulation demonstrates greatly enhanced synergistic therapeutic outcome in the activatable chemo-thermo combined therapy, showing much promising in future clinical transformation.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Hipóxia , Neoplasias/tratamento farmacológico , Oxigênio
3.
Saudi Med J ; 31(9): 974-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20844807

RESUMO

OBJECTIVE: To investigate the effects of a Chinese herb Cordyceps sinensis (C. sinensis) extract on hypoxia-induced proliferation and the underlying mechanisms involved. METHODS: This prospective study was carried out at the Central Laboratory of Yichang Central People's Hospital, Yichang, China from March 2008 to April 2010. The C. sinensis was extracted from the Chinese herb C. sinensis using aqueous alcohol extraction techniques. Forty healthy adult male Sprague Dawley rats were used in the study. The proliferation of pulmonary artery smooth muscle cells (PASMCs) was measured using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell viability was determined by trypan blue exclusion. Cell cycles were analyzed using FACSort flow cytometric analysis. The expression of proliferating cell nuclear antigen (PCNA), c-jun, and c-fos in rat PASMCs was determined by immunohistochemistry. RESULTS: We found an increased proliferation of PASMCs and increased expression of transcription factors, c-jun and c-fos in PASMCs cultured under hypoxic conditions. The C. sinensis extract significantly inhibited hypoxia-induced cell proliferation in a dose-dependent manner. In addition, C. sinensis extract also significantly inhibited the expression of PCNA, c-jun, and c-fos in these PASMCs. CONCLUSION: Our results indicated that C. sinensis extract inhibits hypoxia-induced proliferation of rat PASMCs, probably by suppressing the expression of PCNA, c-fos, c-jun, and decreasing the percentage of cells in synthesis phase, second gap phase, and mitotic phase in cell cycle (S+G2/M) phase. Our results therefore, provided novel evidence that C. sinensis extract may be used as a therapeutic reagent in the treatment of hypoxic pulmonary hypertension.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cordyceps , Medicamentos de Ervas Chinesas/farmacologia , Hipóxia/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Artéria Pulmonar , Animais , Ciclo Celular/efeitos dos fármacos , Citometria de Fluxo , Hipóxia/fisiopatologia , Masculino , Músculo Liso Vascular/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA