Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(6): 354, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296095

RESUMO

Keratinocyte hyperproliferation is a key pathogenic factor in psoriasis. However, the mechanisms that regulate keratinocyte hyperproliferation in this condition remain unclear. Here, we found that SLC35E1 was highly expressed in keratinocytes of patients with psoriasis and that Slc35e1-/- mice displayed a less severe imiquimod (IMQ)-induced psoriasis-like phenotype than their wild-type siblings. In addition, SLC35E1 deficiency inhibited keratinocyte proliferation in both mice and cultured cells. On a molecular level, SLC35E1 was found to regulate zinc ion concentrations and subcellular localization, while zinc ion chelation reversed the IMQ-induced psoriatic phenotype in Slc35e1-/- mice. Meanwhile, epidermal zinc ion levels were decreased in patients with psoriasis and zinc ion supplementation alleviated the psoriatic phenotype in an IMQ-induced mouse model of psoriasis. Our results indicated that SLC35E1 can promote keratinocyte proliferation by regulating zinc ion homeostasis and zinc ion supplementation has potential as a therapy for psoriasis.


Assuntos
Psoríase , Animais , Camundongos , Proliferação de Células , Modelos Animais de Doenças , Homeostase , Imiquimode/efeitos adversos , Queratinócitos/patologia , Camundongos Endogâmicos BALB C , Proteínas de Transporte de Nucleotídeos/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/genética
2.
Ecotoxicol Environ Saf ; 241: 113712, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660379

RESUMO

Raw materials for making dried shrimp (a type of foodstuff) are mostly from farmed shrimp and preliminary findings indicated that head copper (Cu) concentrations in some commercial dried shrimp products exceeded the safe limit specified in pollution-free aquatic products (50 mg/kg), which may influence food safety. Therefore, a 63-day feeding trial was conducted to explore effects of dietary Cu concentrations on accumulation of Cu in tissues, growth performance, immune response and antioxidant status of Pacific white shrimp (Litopenaeus vannamei). Moderating effect of myo-inositol (MI, adding 200 mg/kg diet) on the adverse impacts caused by excessive dietary Cu was also investigated. 600 shrimp (initial weight: 0.89 ± 0.00 g) were divided into five groups: 37.08 mg Cu/kg diet group (control group), 62.57 mg Cu/kg diet group, 125.99 mg Cu/kg diet group, 63.41 mg Cu/kg diet group (supplemented with MI) and 119.19 mg Cu/kg diet group (supplemented with MI). The results showed that dietary Cu concentrations increased from 37.08 to over 62.57 mg/kg, hepatopancreas Cu concentrations raised from 29.04 to 233.43-263.65 mg/kg, and muscle Cu concentrations only increased from 6.22 to 6.99-8.39 mg/kg. Report to control group, excessive Cu concentration (125.99 mg/kg) didn't significantly affect growth performance, but it notably reduced whole body lipid content and immune response, induced oxidative stress and damaged the hepatopancreas structure, which was ameliorated by MI supplementation. The results suggested that consuming shrimp head and its processed products weren't recommended. Cu concentrations of commercial feeds for Pacific white shrimp should be controlled below 62.57 mg/kg. Additionally, MI supplementation mitigated the negative impacts induced by excessive dietary Cu.


Assuntos
Cobre , Penaeidae , Ração Animal/análise , Animais , Cobre/toxicidade , Dieta , Suplementos Nutricionais , Imunidade Inata , Inositol/farmacologia , Penaeidae/fisiologia
3.
Food Chem ; 324: 126888, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32344352

RESUMO

This study aimed to investigate if myo-inositol (MI) supplementation could alleviate adverse effects caused by aflatoxin B1 (AFB1) with respect to growth performance, AFB1 residues, immune response and antioxidant status of Litopenaeus vannamei. 800 shrimp (initial weight: 1.1 g) were divided into five groups: MI0 (basal diet); MI0 + LA, MI0 + HA, MI200 + LA and MI200 + HA fed with AFB1-contaminated diets (LA, low concentration AFB1; HA, high concentration AFB1; MI200, adding 200 mg MI kg-1 diet). The results showed that HA significantly decreased growth performance, systemic inositol content and lipid content. AFB1 residues were detected in the hepatopancreas of shrimp, but not the muscle. Histological lesions were observed in MI0 + LA and MI0 + HA groups. HA supplementation raised malondialdehyde and protein carbonyl content and reduced some antioxidant enzyme activities and immune-related genes expression, which was slightly ameliorated by MI supplementation. Our results suggest that myo-inositol may slightly mitigate negative impacts caused by AFB1 in L. vannamei.


Assuntos
Aflatoxina B1/análise , Antioxidantes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inositol/farmacologia , Penaeidae/crescimento & desenvolvimento , Aflatoxina B1/administração & dosagem , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Dieta , Suplementos Nutricionais , Hepatopâncreas/enzimologia , Hepatopâncreas/metabolismo , Malondialdeído/metabolismo , Penaeidae/imunologia , Penaeidae/metabolismo , Carbonilação Proteica/efeitos dos fármacos
4.
Fish Shellfish Immunol ; 89: 248-256, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30951852

RESUMO

The effect of acute ammonia challenge on survival, immune response and antioxidant status of Litopenaeus vannamei pretreated with diets containing different inositol levels was investigated. Shrimp (initial mean weight 0.40 ±â€¯0.00 g) were randomly allocated in 18 tanks (30 shrimp per tank) and triplicate tanks were fed with a control diet without myo-inositol (MI) supplementation (242.6 mg inositol kg-1 diet) or diets containing diverse levels of inositol (368.8, 459.7, 673.1, 993.8 and 1674.4  mg kg-1 diet) as treatment groups for 8-week. Randomly selected 10 shrimp per tank (final mean weight approximately 11.1-13.8g) were exposed to ammonia stress (total ammonia-nitrogen, 60.21  mg L-1) for 24 h after feeding trial. The results showed that after exposed to ammonia stress, survival rates of MI-supplemented groups were enhanced by 31-77% when compared with the control group. MI supplementation increased activities of alkaline phosphatase (AKP) and acid phosphatase (ACP) in plasma, and reduced its activities in hepatopancreas. It also enhanced activities of total antioxidant capacity (T-AOC), glutathione S-transferase (GST) and glutathione peroxidase (GPX) and content of reduced glutathione (GSH), and lowered malondialdehyde (MDA) and protein carbonyl (PC) content in plasma or hepatopancreas. In addition, mRNA expression levels of ferritin (FT), arginine kinase (AK), thioredoxin (Trx), heat shock protein 70 (Hsp70), catalase (CAT) and peroxiredoxin (Prx) were significantly differentially regulated in hepatopancreas owing to MI supplementation. Therefore, it suggested that L. vannamei pretreated with higher dietary inositol content may have better ammonia stress tolerance and antioxidant status after ammonia stress, and the optimum levels ranged from 459.7 to 993.8 mg inositol kg-1 when total ammonia-nitrogen concentration was 60.21  mg L-1.


Assuntos
Amônia/efeitos adversos , Antioxidantes/metabolismo , Imunidade Inata/efeitos dos fármacos , Inositol/farmacologia , Penaeidae/imunologia , Substâncias Protetoras/farmacologia , Animais , Relação Dose-Resposta a Droga , Inositol/administração & dosagem , Longevidade/efeitos dos fármacos , Penaeidae/efeitos dos fármacos , Penaeidae/fisiologia , Substâncias Protetoras/administração & dosagem , Estresse Fisiológico
5.
Fish Shellfish Immunol ; 88: 53-64, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30790659

RESUMO

A 58-day feeding trial was conducted to evaluate the effects of dietary myo-inositol (MI) supplementation on growth performance, haematological parameters, hepatopancreas histopathology and antioxidant status of Litopenaeus vannamei fed with oxidized fish oil (OFO). Control diet contained fresh fish oil (FFO) without MI supplementation. The other four diets contained two oxidation levels of OFO (peroxide value: 133.2 and 268.7 meq kg-1) with or without 200 mg MI kg-1 diets (MI0+L, MI0+H, MI200 + L and MI200 + H). Results showed that OFO-supplemented groups (without MI supplementation) showed better growth performance and lower whole-body inositol content when opposed to control group. MI supplementation significantly improved whole-body inositol content in high-oxidized fish oil (HOFO) groups, and also reduced whole-body lipid in low-oxidized fish oil (LOFO) groups. Moreover, Supplementation of OFO and MI markedly hit the fatty acid profile of muscle. HOFO caused severe histopathological changes in hepatopancreas of shrimp, which slightly alleviated by MI supplementation. MI supplementation also grew the total protein (TP) content and alkaline phosphatase (AKP) activity and decreased the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) of serum in OFO-supplemented groups. Ingestion of OFO increased levels of lipid peroxidation and protein oxidation in serum or hepatopancreas, which partly ameliorated by MI supplementation. Activities of antioxidant enzymes exhibited different expression patterns because of OFO and MI. In addition, HOFO markedly increased mRNA expression levels of antioxidant genes including ferritin (FT), thioredoxin (Trx), GPX, glutathione S-transferase (GST) and catalase (CAT) and decreased peroxiredoxin (Prx) expression, in which expression of GPX and Prx were increased owing to MI supplementation. Therefore, it suggested that dietary OFO stimulated growth performance, but also induced oxidative stress and caused impairment to hepatopancreas in L. vannamei. The negative impact brought about by OFO was partially mitigated by dietary MI supplementation.


Assuntos
Ração Animal/análise , Óleos de Peixe , Inositol/farmacologia , Penaeidae/efeitos dos fármacos , Animais , Antioxidantes/análise , Aquicultura/métodos , Dieta/veterinária , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/patologia , Peroxidação de Lipídeos , Oxirredução , Penaeidae/crescimento & desenvolvimento , Penaeidae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA