Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Ethnopharmacol ; 326: 117901, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38341112

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wuji Wan (WJW) is a traditional Chinese medicine formula that can be found in the "Prescriptions of Taiping Benevolent Dispensary" that has been employed in treating gastric discomfort, burning epigastric pain, and gastric reflux for hundreds of years and has shown promise for treating gastric ulcers (GUs). However, the active components and mechanism of action against GUs remain unclear. AIM OF THE STUDY: The aim of this study was to explore the active components of WJW and elucidate the underlying mechanism involved in treating GUs. MATERIALS AND METHODS: Initially, cell viability was measured by a cell counting kit 8 (CCK-8) assay to evaluate the efficacy of WJW-containing serum in vitro. The gastric ulcer index, ulcer inhibition rate, hematoxylin and staining (H&E), and periodic acid-Schiff (PAS) staining were used to evaluate the therapeutic effect of WJW in vivo. Subsequently, the levels of inflammatory factors and oxidative stress factors were determined using an enzyme-linked immunosorbent assays (ELISA) on in vitro and in vivo samples. Additionally, UPLC-Q Exactive Plus Orbitrap HRMS was used to analyze the components that were absorbed into the blood of WJW and its metabolites. Network pharmacology and metabolomics were subsequently used to identify the targets and pathways. Real-time quantitative PCR (RT‒qPCR) and Western blotting were used to verify the mRNA and protein levels of the key targets and pathways. Finally, the active components were identified by molecular docking to verify the binding stability of the components and key targets. RESULTS: WJW-containing serum ameliorated ethanol-induced damage in GES-1 cells and promoted cell healing. WJW-containing serum reduced IL-6, TNF-α, MDA, and LDH levels while increasing IL-10, SOD, and T-AOC levels in the cells. Moreover, WJW treatment resulted in decreased IL-6, TNF-α, and MDA levels and increased IL-10, SOD, PGE2, and NO levels in GUs rats. In addition, eight components of WJW were absorbed into the blood. The network pharmacology results revealed 192 common targets for blood entry components and GUs, and KEGG analysis revealed that apoptosis signaling pathways were the main pathways involved in WJW activity against GUs. Metabolomic screening was used to identify 13 differential metabolites. There were 23 common targets for blood entry components, GUs, and differential metabolites, with the key targets TNF (TNF-α), AKT1, PTGS2 (COX2) and MAPK1. WJW significantly inhibited the expression of Bax, Caspase-9, Caspase-3, cleaved Caspase-9, cleaved Caspase-3, TNF-α, COX2, and p-p44/42 MAPK while promoting the expression of Bcl-2 and p-AKT1. Molecular docking revealed that the active components of WJW for the treatment of GUs are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. CONCLUSIONS: WJW treatment reduces inflammation and oxidative stress injury and inhibits apoptosis signaling pathways. The main active components are berberine, palmatine, coptisine, evodiamine, rutaecarpine, evocarpine, and paeoniflorin. In this paper, we provide a new strategy for exploring the active components of traditional Chinese medicine formulas for the treatment of diseases based on target mechanisms.


Assuntos
Berberina , Medicamentos de Ervas Chinesas , Glucosídeos , Monoterpenos , Úlcera Gástrica , Animais , Ratos , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Caspase 3 , Caspase 9 , Interleucina-10 , Ciclo-Oxigenase 2 , Interleucina-6 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fator de Necrose Tumoral alfa , Superóxido Dismutase , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Ecotoxicol Environ Saf ; 270: 115813, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113798

RESUMO

To investigate the impact of the ethanoic fractions of Periploca forrestii Schltr. (P. forrestii) in ameliorating the liver injury caused by fluoride ingestion and to explore the potential mechanisms. Initially, an in vitro fluorosis cell model was constructed using the human normal liver cell line (L-02) induced by fluoride. Cell viability was assessed using the CCK-8 assay kit. The lactate dehydrogenase (LDH) assay kit was utilized to measure LDH content in the cell supernatant, while the malonic dialdehyde (MDA) assay kit was employed to determine MDA levels within the cells. Subsequently, a fluorosis rat model was established, and LDH content in the cell supernatant was measured using the LDH assay kit. Various parameters, including MDA, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and reactive oxygen species (ROS) content within the cells, were detected using appropriate assay kits. Additionally, cell apoptosis rate was determined using the Annexin V-FITC/PI cell apoptosis assay kit. The protein expression levels of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), Caspase-3, Cleaved Caspase-3, Caspase-9, and Cleaved Caspase-9 were analyzed through Western blotting. Compared to the model group, the ethanolic fraction D of P.forrestii (Fr.D) increased cell viability (P < 0.01) and decreased LDH and MDA levels (P < 0.01). In the high-dose Fr.D treatment group of fluoride-poisoned rats, serum ALT, AST, LDH and MDA levels significantly decreased (P < 0.01). Results from rat primary cells exhibited that the Fr.D administration group exhibited significantly higher cell survival rates than the fluoride group (P < 0.01). Similarly, primary rat cells treated with Fr.D showed enhanced cell viability (P < 0.05) and reduced apoptosis rate, LDH, MDA, SOD, GSH-Px, CAT, and ROS levels (P < 0.05) compared to the model group. Western blot analysis indicated that the Fr.D treatment group elevated the Bcl-2/Bax protein expression ratio and reduced Caspase-3 and Caspase-9 activation levels (P < 0.01) compared to the model group. The results suggest that components within the Fr.D from Periploca forrestii may alleviate fluoride-induced liver injury by potentially counteracting oxidative stress and cell apoptosis.


Assuntos
Periploca , Ratos , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Fluoretos/toxicidade , Fluoretos/metabolismo , Fígado/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo
3.
Carbohydr Polym ; 305: 120577, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737210

RESUMO

With the dramatically increased environmental problems, the rational design of sustainable polymers from renewable feedstocks opens new avenues to reduce the huge pollution impact. The major challenge for sustainable polymers is the decreased mechanical performance compared to that of petroleum-based materials. In this work, fully biobased sustainable elastomers were developed by integrating renewable chitin, lignin, and plant oil into one macromolecule, in which chitin was chosen as the rigid backbone, while a lignin-derived monomer vanillin acrylate (VA) and a plant oil-based monomer lauryl acrylate (LA) were selected as the hard and soft segments for the grafted side chains. A series of Chitin-graft-poly(vanillin acrylate-co-lauryl acrylate) (Chitin-g-P(VA-co-LA)) copolymers with varied feed ratios and chitin contents were synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization as an effective grafting strategy. In addition, a dynamic cross-linked network was incorporated via Schiff-base reaction to improve the macroscopic behavior of such kind of chitin graft elastomers. These sustainable elastomers are mechanically strong and show excellent reprocessablity, as well as outstanding UV-blocking property. This strategy is versatile and can inspire the further development of fully biobased sustainable materials from natural resources.

4.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5936-5943, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36472013

RESUMO

Gukang Capsules are often used in combination with drugs to treat fractures, osteoarthritis, and osteoporosis. Cytochrome P450(CYP450) mainly exists in the liver and participates in the oxidative metabolism of a variety of endogenous and exogenous substances and serves as an important cause of drug-metabolic interactions and adverse reactions. Therefore, it is of great significance to study the effect of Gukang Capsules on the activity and expression of CYP450 for increasing its clinical rational medication and improving the safety of drug combination. In this study, the Cocktail probe method was used to detect the changes in the activities of CYP1A2, CYP3A2, CYP2C11, CYP2C19, CYP2D4, and CYP2E1 in rat liver after treatment with high-, medium-and low-dose Gukang Capsules. The rat liver microsomes were extracted by the calcium chloride method, and protein expression of the above six CYP isoform enzymes was detected by Western blot. The results showed that the low-dose Gukang Capsules could induce CYP3A2 and CYP2D4 in rats, medium-dose Gukang Capsules had no effect on them, and high-dose Gukang Capsules could inhibit them in rats. The high-dose Gukang Capsules did not affect CYP2C11 in rats, but low-and medium-dose Gukang Capsules could induce CYP2C11 in rats. Gukang Capsules could inhibit CYP2C19 in rats and induce CYP1A2 in a dose-independent manner, but did not affect CYP2E1. If Gukang Capsules were co-administered with CYP1A2, CYP2C19, CYP3A2, CYP2C11, and CYP2D4 substrates, the dose should be adjusted to avoid drug interactions.


Assuntos
Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2E1 , Ratos , Animais , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Ratos Sprague-Dawley , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos , Fígado , Citocromo P-450 CYP3A/metabolismo
5.
Int J Biol Macromol ; 209(Pt B): 1848-1857, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487380

RESUMO

In this work, sustainable cellulose-g-poly(lauryl acrylate-co-acrylamide) [Cell-g-P(LA-co-AM)] bottlebrush copolymer elastomers derived from cellulose and plant oil were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Differential scanning calorimeter (DSC) results indicate that these thermally stable Cell-g-P(LA-co-AM) bottlebrush copolymer elastomers show adjustable melting temperatures. Monotonic and cyclic tensile tests suggest that the mechanical properties, including tensile strength, extensibility, Young's modulus, and elasticity, can be conveniently controlled by changing the LA/AM feed ratio and cellulose content. In such kind of bottlebrush copolymer elastomers, the rigid cellulose backbones act as cross-linking points to provide tensile strength. The incorporated PAM segments can form additional network structure via hydrogen bonding, resulting in enhanced tensile strength but decreased extensibility when more PAM segments are introduced. This versatile strategy can promote the development of sustainable cellulose-based bottlebrush copolymer elastomers from renewable resources.


Assuntos
Celulose , Elastômeros , Celulose/química , Elastômeros/química , Óleos de Plantas , Polimerização , Polímeros
6.
Pharm Biol ; 60(1): 525-534, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35253576

RESUMO

CONTEXT: Keguan-1 (KG-1) plays a vital role in enhancing the curative effects, improving quality of life, and reducing the development of acute lung injury (ALI). OBJECTIVE: To unravel the protective effect and underlying mechanism of KG-1 against ALI. MATERIALS AND METHODS: C57BL/6J mice were intratracheally instilled with lipopolysaccharide to establish the ALI model. Then, mice in the KG-1 group received a dose of 5.04 g/kg for 12 h. The levels of proinflammatory cytokines, chemokines, and pathological characteristics were determined to explore the effects of KG-1. Next, untargeted metabolomics was used to identify the differential metabolites and involved pathways for KG-1 anti-ALI. Network pharmacology was carried out to predict the putative active components and drug targets of KG-1 anti-ALI. RESULTS: KG-1 significantly improved the levels of TNF-α (from 2295.92 ± 529.87 pg/mL to 1167.64 ± 318.91 pg/mL), IL-6 (from 4688.80 ± 481.68 pg/mL to 3604.43 ± 382.00 pg/mL), CXCL1 (from 4361.76 ± 505.73 pg/mL to 2981.04 ± 526.18 pg/mL), CXCL2 (from 5034.09 ± 809.28 pg/mL to 2980.30 ± 747.63 pg/mL), and impaired lung histological damage. Untargeted metabolomics revealed that KG-1 significantly regulated 12 different metabolites, which mainly related to lipid, amino acid, and vitamin metabolism. Network pharmacology showed that KG-1 exhibited anti-ALI effects through 17 potentially active components acting on seven putative drug targets to regulate four metabolites. DISCUSSION AND CONCLUSIONS: This work elucidated the therapeutic effect and underlying mechanism by which KG-1 protects against ALI from the view of the metabolome, thus providing a scientific basis for the usage of KG-1.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Farmacologia em Rede
7.
J Ethnopharmacol ; 285: 114838, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788645

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Keguan-1, a new traditional Chinese medicine (TCM) prescription contained seven Chinese herbs, is developed to treat coronavirus disease 19 (COVID-19). The first internationally registered COVID-19 randomised clinical trial on integrated therapy demonstrated that Keguan-1 significantly reduced the incidence of ARDS and inhibited the severe progression of COVID-19. AIM OF THE STUDY: To investigate the protective mechanism of Keguan-1 on ARDS, a lipopolysaccharide (LPS)-induced acute lung injury (ALI) model was used to simulate the pathological state of ARDS in patients with COVID-19, focusing on its effect and mechanism on ALI. MATERIALS AND METHODS: Mice were challenged with LPS (2 mg/kg) by intratracheal instillation (i.t.) and were orally administered Keguan-1 (low dose, 1.25 g/kg; medium dose, 2.5 g/kg; high dose, 5 g/kg) after 2 h. Bronchoalveolar lavage fluid (BALF) and lung tissue were collected 6 h and 24 h after i.t. administration of LPS. The levels of inflammatory factors tumour necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1ß, keratinocyte-derived chemokine (KC or mCXCL1), macrophage inflammatory protein 2 (MIP2 or mCXCL2), angiotensin II (Ang II), and endothelial cell junction-associated proteins were analysed using ELISA or western blotting. RESULTS: Keguan-1 improved the survival rate, respiratory condition, and pathological lung injury; decreased the production of proinflammatory factors (TNF-α, IL-6, IL-1ß, KC, and MIP2) in BALF and the number of neutrophils in the lung tissues; and ameliorated inflammatory injury in the lung tissues of the mice with LPS-induced ALI. Keguan-1 also reduced the expression of Ang II and the adhesion molecule ICAM-1; increased tight junction proteins (JAM-1 and claudin-5) and VE-cadherin expression; and alleviated pulmonary vascular endothelial injury in LPS-induced ALI. CONCLUSION: These results demonstrate that Keguan-1 can improve LPS-induced ALI by reducing inflammation and pulmonary vascular endothelial injury, providing scientific support for the clinical treatment of patients with COVID-19. Moreover, it also provides a theoretical basis and technical support for the scientific use of TCMs in emerging infectious diseases.


Assuntos
Lesão Pulmonar Aguda , Antivirais/farmacologia , Líquido da Lavagem Broncoalveolar , COVID-19 , Medicamentos de Ervas Chinesas/farmacologia , Pulmão , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/virologia , COVID-19/complicações , COVID-19/imunologia , COVID-19/virologia , Cápsulas , Quimiocina CXCL2/análise , Coix , Forsythia , Interleucina-1beta/análise , Interleucina-6/análise , Lonicera , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Mortalidade , Morus , Fragmentos de Peptídeos/análise , Prunus armeniaca , Respiração/efeitos dos fármacos , SARS-CoV-2 , Resultado do Tratamento , Fator de Necrose Tumoral alfa/análise
8.
Front Pharmacol ; 13: 931811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686658

RESUMO

Background: Shenxiong Glucose Injection (SGI) is a traditional Chinese medicine formula composed of ligustrazine hydrochloride and Danshen (Radix et rhizoma Salviae miltiorrhizae; Salvia miltiorrhiza Bunge, Lamiaceae). Our previous studies and others have shown that SGI has excellent therapeutic effects on myocardial ischemia (MI). However, the potential mechanisms of action have yet to be elucidated. This study aimed to explore the molecular mechanism of SGI in MI treatment. Methods: Sprague-Dawley rats were treated with isoproterenol (ISO) to establish the MI model. Electrocardiograms, hemodynamic parameters, echocardiograms, reactive oxygen species (ROS) levels, and serum concentrations of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) were analyzed to explore the protective effect of SGI on MI. In addition, a model of oxidative damage and apoptosis in human umbilical vein endothelial cells (HUVECs) was established using CoCl2. Cell viability, Ca2+ concentration, mitochondrial membrane potential (MMP), apoptosis, intracellular ROS, and cell cycle parameters were detected in the HUVEC model. The expression of apoptosis-related proteins (Bcl-2, Caspase-3, PARP, cytoplasmic and mitochondrial Cyt-c and Bax, and p-ERK1/2) was determined by western blotting, and the expression of cleaved caspase-3 was analyzed by immunofluorescence. Results: SGI significantly reduced ROS production and serum concentrations of cTnI and cTnT, reversed ST-segment elevation, and attenuated the deterioration of left ventricular function in ISO-induced MI rats. In vitro, SGI treatment significantly inhibited intracellular ROS overexpression, Ca2+ influx, MMP disruption, and G2/M arrest in the cell cycle. Additionally, SGI treatment markedly upregulated the expression of anti-apoptotic protein Bcl-2 and downregulated the expression of pro-apoptotic proteins p-ERK1/2, mitochondrial Bax, cytoplasmic Cyt-c, cleaved caspase-3, and PARP. Conclusion: SGI could improve MI by inhibiting the oxidative stress and apoptosis signaling pathways. These findings provide evidence to explain the pharmacological action and underlying molecular mechanisms of SGI in the treatment of MI.

9.
Pharm Biol ; 59(1): 537-545, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33941036

RESUMO

CONTEXT: Owing to the complexity of chemical ingredients in traditional Chinese medicine (TCM), it is difficult to maintain quality and efficacy by relying only on chemical markers. OBJECTIVE: Lianhua Qingwen capsule (LHQW) was selected as an example to discuss the feasibility of a bioassay for quality control. MATERIALS AND METHODS: Network pharmacology was used to screen potential targets in LHQW with respect to its anti-inflammatory effects. An in vitro cell model was used to validate the prediction. An anti-inflammatory bioassay was established for the quality evaluation of LHQW in 40 batches of marketed products and three batches of destructed samples. RESULTS: The tumor necrosis factor/interleukin-6 (TNF/IL-6) pathway via macrophage was selected as the potential target of LHQW. The IC50 value of LHQW on RAW 264.7 was 799.8 µg/mL. LHQW had significant inhibitory effects on the expression of IL-6 in a dose-dependent manner (p < 0.05). The anti-inflammatory biopotency of LHQW was calculated based on the inhibitory bioactivity on IL-6. The biopotency of 40 marketed samples ranged from 404 U/µg to 2171 U/µg, with a coefficient of variation (CV) of 37.91%. By contrast, the contents of forsythin indicated lower CV (28.05%) than the value of biopotency. Moreover, the biopotencies of destructed samples declined approximate 50%, while the contents of forsythin did not change. This newly established bioassay revealed a better ability to discriminate the quality variations of LHQW as compared to the routine chemical determination. CONCLUSIONS: A well-established bioassay may have promising ability to reveal the variance in quality of TCM.


Assuntos
Anti-Inflamatórios/normas , Bioensaio/normas , Medicamentos de Ervas Chinesas/normas , Mediadores da Inflamação/antagonistas & inibidores , Controle de Qualidade , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Bioensaio/métodos , Relação Dose-Resposta a Droga , Composição de Medicamentos/métodos , Composição de Medicamentos/normas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Mediadores da Inflamação/metabolismo , Camundongos , Células RAW 264.7
10.
Zhongguo Zhong Yao Za Zhi ; 46(10): 2556-2564, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34047103

RESUMO

Based on the heat-clearing and detoxifying effects of Gentianae Radix et Rhizoma, the network pharmacology is mainly used to predict the potential targets of Gentianae Radix et Rhizoma for anti-inflammatory activity and to perform the experimental verification. A method for detecting the biological potency of Gentianae Radix et Rhizoma based on verifiable targets has been established to provide a reference for improving the quality evaluation and control standards of Gentianae Radix et Rhizoma. High performance liquid chromatography can be used to construct chemical fingerprints of different batches of Gentianae Radix et Rhizoma. Constructing a component-target-disease network of Gentianae Radix et Rhizoma for its anti-inflammatory activity was applied to screen potential anti-inflammatory components and related targets of Gentianae Radix et Rhizoma, and to verify the target of Gentianae Radix et Rhizoma by using biological evaluation methods. Detecting the biological potency of different batches of Gentianae Radix et Rhizoma extracts was used to inhibit COX-2 enzyme activity based the verifiable target cyclooxygenase-2(COX-2). The results showed that different batches of Gentianae Radix et Rhizoma accorded with the pharmacopoeia testing regulations, and the chemical fingerprints have a high similarity(similarity>0.93), suggesting that there is no significant difference in the characteristics of the chemical components. Based on network pharmacology predictions, 18 candidate targets were found to have potential direct interactions with the ingredients in Gentianae Radix et Rhizoma. Among them, the most important target is COX-2. Based on the experimental verification of recombinant human COX-2 protease activity inhibition, Gentianae Radix et Rhizoma can inhibit the COX-2 enzyme activity in a dose-dependent manner. It can function with a low concentration(0.75 mg·mL~(-1)), which preliminarily confirmed the accuracy of network pharmacology prediction. The biological potency detection method of Gentianae Radix et Rhizoma based on COX-2 inhibitory activity was optimized and established. The qualitative response parallel line method was used to calculate the biological potency of anti-inflammatory activity, which ranged from 23.04 to 46.60 U·mg~(-1). For network pharmacology prediction, it can screen and clarify the possible targets of traditional Chinese medicine rapidly, which can guide the establishment of a biological evaluation method for the quality of medicinal materials with related activities. Compared with chemical fingerprints, the biological potency testing can better detect quality fluctuations of traditional Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Anti-Inflamatórios/farmacologia , Bioensaio , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Medicina Tradicional Chinesa , Controle de Qualidade , Rizoma
11.
Artigo em Inglês | MEDLINE | ID: mdl-33927776

RESUMO

Fuke Qianjin Capsule (FKQJ) is a common TCM compound formula in the treatment of gynecological inflammation-related diseases. This study intends to explore and establish a bioassay method to further improve its quality control. The bioassay method for the determination of anti-inflammatory biopotency was established based on its inhibitory activity on recombinant human cyclooxygenase-2 (COX-2), an active target of FKQJ in the treatment of female pelvic inflammatory disease. We firstly established chemical fingerprint of 20 batches of FKQJ by ultra-high-performance liquid chromatography to identify the components and analyze the chemical similarities. The similarity within different batches of FKQJ was relatively high. The values of similarity of the 19 batches were between 0.973 and 0.995, while one batch's similarity value was 0.813. Celecoxib, a selective inhibitor of COX-2, was chosen as the positive control drug in COX-2 activity assay to establish an anti-inflammatory biopotency detection method based on parallel line test of qualitative response. The methodological investigation showed that the method possessed good repeatability and precision. Secondly, the anti-inflammatory biopotency of 20 batches of FKQJ for inhibiting COX-2 was determined. The results showed that the biopotency of different batches of FKQJ ranged from 676 U/µg to 1310 U/µg, with average value of 918 U/µg and RSD of 16.7%. Based on multiple linear regression analysis, we found that three contents were highly correlated with the anti-inflammatory biopotency, while chlorogenic acid was validated of the strongest anti-inflammatory activity in vitro. Compared with chemical detection, bioassay can better reflect the quality fluctuation of different batches of products and correlate the known pharmacodynamic targets. The supplement of the bioassay method based on chemical evaluation is helpful to improve the quality control ability of Chinese patent medicine and ensure its clinical efficacy is stable and controllable.

12.
Biomed Chromatogr ; 35(9): e5140, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33830528

RESUMO

Owing to the complexity of the composition of herbal and dietary supplements, it is a challenging problem to efficiently screen and identify active or toxic compounds. Psoralea corylifolia L. (PCL) was selected as the subbject to establish a methodology for rapid screening and identification of hepatotoxic compounds. High-content imaging, ultra-performance liquid chromatography and high-resolution mass spectrometry were used in this study to detect the hepatotoxicity and identify unknown compounds in PCL samples. Then, putative toxic compounds which are highly related to hepatotoxicity were screened by spectrum-toxicity correlation analysis, and the toxicity intensity verified by high-content imaging. The maximum nontoxic dose of processed samples with good detoxification effect reduced more than 9 times compared with unprocessed raw medicinal materials. Spectrum-toxicity correlation analysis showed that bavachinin A, bavachin, isobavachalcone and neobavaisoflavone had high correlation with the hepatotoxicity of PCL, and psoralen and isopsoralen had low correlation with hepatotoxicity. This study verified the hepatotoxicity of these six putative compound monomers, proving the results of spectrum-toxicity correlation analysis. Based on the correlation analysis of high-resolution mass spectrometry of detection compounds and high-content imaging of hepatocyte toxicity data, the potential toxic compound of herbal and dietary supplement products can be quickly and accurately screened.


Assuntos
Suplementos Nutricionais/toxicidade , Medicamentos de Ervas Chinesas/toxicidade , Hepatócitos/efeitos dos fármacos , Psoralea/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ficusina/toxicidade , Flavonoides/toxicidade , Humanos , Isoflavonas/toxicidade , Espectrometria de Massas/métodos , Imagem Molecular/métodos
13.
Front Med (Lausanne) ; 7: 592434, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330552

RESUMO

Aim: The diagnosis of drug-induced liver injury (DILI) remains a challenge and the cases of Polygonum multiflorum Thunb. (PM) induced DILI (PM-DILI) have received much attention This study aimed to identify a simple and high-efficiency approach to PM-DILI diagnosis via metabolomics analysis. Methods: Plasma metabolites in 13 PM-DILI patients were profiled by liquid chromatography along with high-resolution mass spectrometry. Meanwhile, the metabolic characteristics of the PM-DILI were compared with that of autoimmune hepatitis (AIH), hepatitis B (HBV), and healthy volunteers. Results: Twenty-four metabolites were identified to present significantly different levels in PM-DILI patients compared with HBV and AIH groups. These metabolites were enriched into glucose, amino acids, and sphingolipids metabolisms. Among these essential metabolites, the ratios of P-cresol sulfate vs. phenylalanine and inosine vs. bilirubin were further selected using a stepwise decision tree to construct a classification model in order to differentiate PM-DILI from HBV and AIH. The model was highly effective with sensitivity of 92.3% and specificity of 88.9%. Conclusions: This study presents an integrated view of the metabolic features of PM-DILI induced by herbal medicine, and the four-metabolite decision tree technique imparts a potent tool in clinical diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA